These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 20603865)

  • 1. Using swept-source optical coherence tomography to monitor the formation of neo-epidermis in tissue-engineered skin.
    Smith LE; Bonesi M; Smallwood R; Matcher SJ; MacNeil S
    J Tissue Eng Regen Med; 2010 Dec; 4(8):652-8. PubMed ID: 20603865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution optical coherence tomography as a non-destructive monitoring tool for the engineering of skin equivalents.
    Spöler F; Först M; Marquardt Y; Hoeller D; Kurz H; Merk H; Abuzahra F
    Skin Res Technol; 2006 Nov; 12(4):261-7. PubMed ID: 17026657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practical aspects of OCT imaging in tissue engineering.
    Matcher SJ
    Methods Mol Biol; 2011; 695():261-80. PubMed ID: 21042978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging and characterization of bioengineered blood vessels within a bioreactor using free-space and catheter-based OCT.
    Gurjarpadhye AA; Whited BM; Sampson A; Niu G; Sharma KS; Vogt WC; Wang G; Xu Y; Soker S; Rylander MN; Rylander CG
    Lasers Surg Med; 2013 Aug; 45(6):391-400. PubMed ID: 23740768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time three-dimensional imaging of epidermal splitting and removal by high-definition optical coherence tomography.
    Boone M; Draye JP; Verween G; Pirnay JP; Verbeken G; De Vos D; Rose T; Jennes S; Jemec GB; Del Marmol V
    Exp Dermatol; 2014 Oct; 23(10):725-30. PubMed ID: 25047067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Optical coherence tomography (OCT) to evaluate cartilage tissue engineering].
    Gavenis K; Schmitt R; Eder K; Mumme T; Andereya S; Schneider U; Müller-Rath R
    Z Orthop Unfall; 2008; 146(6):788-92. PubMed ID: 19085730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recellularizing of human acellular dermal matrices imaged by high-definition optical coherence tomography.
    Boone MA; Draye JP; Verween G; Aiti A; Pirnay JP; Verbeken G; De Vos D; Rose T; Jennes S; Jemec GB; Del Marmol V
    Exp Dermatol; 2015 May; 24(5):349-54. PubMed ID: 25704791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute skin alterations following ultraviolet radiation investigated by optical coherence tomography and histology.
    Gambichler T; Boms S; Stücker M; Moussa G; Kreuter A; Sand M; Sand D; Altmeyer P; Hoffmann K
    Arch Dermatol Res; 2005 Nov; 297(5):218-25. PubMed ID: 16215762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue-engineered skin preserving the potential of epithelial cells to differentiate into hair after grafting.
    Larouche D; Cuffley K; Paquet C; Germain L
    Tissue Eng Part A; 2011 Mar; 17(5-6):819-30. PubMed ID: 20973750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using human epithelial amnion cells in human de-epidermized dermis for skin regeneration.
    Jiang LW; Chen H; Lu H
    J Dermatol Sci; 2016 Jan; 81(1):26-34. PubMed ID: 26596214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of optical coherence tomography in dermatology.
    Gambichler T; Moussa G; Sand M; Sand D; Altmeyer P; Hoffmann K
    J Dermatol Sci; 2005 Nov; 40(2):85-94. PubMed ID: 16139481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical coherence tomography: a noninvasive method to assess wound reepithelialization.
    Singer AJ; Wang Z; McClain SA; Pan Y
    Acad Emerg Med; 2007 May; 14(5):387-91. PubMed ID: 17363766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Full-field optical coherence tomography: a new technology for 3D high-resolution skin imaging.
    Dalimier E; Salomon D
    Dermatology; 2012; 224(1):84-92. PubMed ID: 22487768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of imaging methodologies for 3D tissue engineering.
    Smith LE; Smallwood R; Macneil S
    Microsc Res Tech; 2010 Dec; 73(12):1123-33. PubMed ID: 20981758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology and epidermal thickness of normal skin imaged by optical coherence tomography.
    Mogensen M; Morsy HA; Thrane L; Jemec GB
    Dermatology; 2008; 217(1):14-20. PubMed ID: 18309240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of using tissue-engineered skin reconstructed by candidate epidermal stem cells to cover the nude mice with full-thickness skin defect.
    Xie JL; Li TZ; Qi SH; Huang B; Chen XG; Chen JD
    J Plast Reconstr Aesthet Surg; 2007; 60(9):983-90. PubMed ID: 17662463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging of intradermal tattoos by optical coherence tomography.
    Morsy H; Mogensen M; Thrane L; Jemec GB
    Skin Res Technol; 2007 Nov; 13(4):444-8. PubMed ID: 17908197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity.
    Morsy H; Kamp S; Thrane L; Behrendt N; Saunder B; Zayan H; Elmagid EA; Jemec GB
    Arch Dermatol Res; 2010 Mar; 302(2):105-11. PubMed ID: 19894055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of tissue-engineered skin and oral mucosa for clinical and experimental use.
    MacNeil S; Shepherd J; Smith L
    Methods Mol Biol; 2011; 695():129-53. PubMed ID: 21042970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of dermal wound repair after collagen implantation with optical coherence tomography.
    Wang Z; Pan H; Yuan Z; Liu J; Chen W; Pan Y
    Tissue Eng Part C Methods; 2008 Mar; 14(1):35-45. PubMed ID: 18454644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.