These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 20604518)

  • 1. Phosphine-catalyzed reductions of alkyl silyl peroxides by titanium hydride reducing agents: development of the method and mechanistic investigations.
    Harris JR; Haynes MT; Thomas AM; Woerpel KA
    J Org Chem; 2010 Aug; 75(15):5083-91. PubMed ID: 20604518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unusual oxidation of phosphines employing water as the oxygen atom source and tris(benzene-1,2-dithiolate)molybdenum(VI) as the oxidant. A functional molybdenum hydroxylase analogue system.
    Cervilla A; Pérez-Pla F; Llopis E; Piles M
    Inorg Chem; 2006 Sep; 45(18):7357-66. PubMed ID: 16933938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of tertiary phosphine oxides with DIBAL-H.
    Busacca CA; Raju R; Grinberg N; Haddad N; James-Jones P; Lee H; Lorenz JC; Saha A; Senanayake CH
    J Org Chem; 2008 Feb; 73(4):1524-31. PubMed ID: 18197688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binuclear manganese compounds of potential biological significance. Part 2. Mechanistic study of hydrogen peroxide disproportionation by dimanganese complexes: the two oxygen atoms of the peroxide end up in a dioxo intermediate.
    Dubois L; Caspar R; Jacquamet L; Petit PE; Charlot MF; Baffert C; Collomb MN; Deronzier A; Latour JM
    Inorg Chem; 2003 Aug; 42(16):4817-27. PubMed ID: 12895103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of secondary and tertiary phosphine oxides to phosphines.
    Hérault D; Nguyen DH; Nuel D; Buono G
    Chem Soc Rev; 2015 Apr; 44(8):2508-28. PubMed ID: 25714261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of beta-silyl diacyl peroxide decomposition: a mild and stereoselective synthesis of beta-silyl esters.
    Masterson DS; Porter NA
    J Org Chem; 2004 May; 69(11):3693-9. PubMed ID: 15152998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen-oxygen bond homolysis in a novel titanium(IV) alkylperoxide complex, Cp2Ti(OOtBu)Cl.
    DiPasquale AG; Kaminsky W; Mayer JM
    J Am Chem Soc; 2002 Dec; 124(49):14534-5. PubMed ID: 12465953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of phosphorus-nitrogen bonds by reduction of a titanium phosphine complex under molecular nitrogen.
    Morello L; Yu P; Carmichael CD; Patrick BO; Fryzuk MD
    J Am Chem Soc; 2005 Sep; 127(37):12796-7. PubMed ID: 16159262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A combined spin trapping/EPR/mass spectrometry approach to study the formation of a cyclic peroxide by dienolic precursor autoxidation.
    Triquigneaux M; Charles L; André-Barrès C; Tuccio B
    Org Biomol Chem; 2010 Mar; 8(6):1361-7. PubMed ID: 20204208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of alkylarenes by nitrate catalyzed by polyoxophosphomolybdates: synthetic applications and mechanistic insights.
    Khenkin AM; Neumann R
    J Am Chem Soc; 2004 May; 126(20):6356-62. PubMed ID: 15149233
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Mohapatra PP; Chiemezie CO; Kligman A; Kim MM; Busch TM; Zhu TC; Greer A
    Photochem Photobiol; 2017 Nov; 93(6):1430-1438. PubMed ID: 28722754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precipiton reagents: precipiton phosphines for solution-phase reductions.
    Bosanac T; Wilcox CS
    Org Lett; 2004 Jul; 6(14):2321-4. PubMed ID: 15228269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective mono reduction of bis-phosphine oxides under mild conditions.
    Petersson MJ; Loughlin WA; Jenkins ID
    Chem Commun (Camb); 2008 Oct; (37):4493-4. PubMed ID: 18802601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active peroxo titanium complexes: syntheses, characterization and their potential in the photooxidation of 2-propanol.
    Rohe M; Merz K
    Chem Commun (Camb); 2008 Feb; (7):862-4. PubMed ID: 18253529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of phosphine reagents for the high-performance liquid chromatographic-fluorometric determination of lipid hydroperoxides.
    Akasaka K; Ohrui H
    J Chromatogr A; 2000 Jun; 881(1-2):159-70. PubMed ID: 10905700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphadioxirane: a peroxide from an ortho-substituted arylphosphine and singlet dioxygen.
    Ho DG; Gao R; Celaje J; Chung HY; Selke M
    Science; 2003 Oct; 302(5643):259-62. PubMed ID: 14551430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel reduction of diketones with i-RMgBr catalyzed by Cp2TiCl2 and deoxygenation of sulfoxides by Cp2TiCl2/Al system.
    Zhang YM; Lin MQ; Yu YP
    J Zhejiang Univ Sci; 2004 Oct; 5(10):1175-9. PubMed ID: 15362186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient catalytic oxidation of alkanes by Lewis acid/[Os(VI)(N)Cl4]- using peroxides as terminal oxidants. Evidence for a metal-based active intermediate.
    Yiu SM; Man WL; Lau TC
    J Am Chem Soc; 2008 Aug; 130(32):10821-7. PubMed ID: 18642814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic reactions of titanium alkoxides with Grignard reagents and imines: a mechanistic study.
    Kumar A; Samuelson AG
    Chem Asian J; 2010 Aug; 5(8):1830-7. PubMed ID: 20564277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.