BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

455 related articles for article (PubMed ID: 20605036)

  • 41. Comparative sorption and desorption behaviors of PFHxS and PFOS on sequentially extracted humic substances.
    Zhao L; Zhang Y; Fang S; Zhu L; Liu Z
    J Environ Sci (China); 2014 Dec; 26(12):2517-25. PubMed ID: 25499500
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon.
    Deng S; Nie Y; Du Z; Huang Q; Meng P; Wang B; Huang J; Yu G
    J Hazard Mater; 2015 Jan; 282():150-7. PubMed ID: 24721493
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stoichiometry of removal of natural organic matter by ion exchange.
    Boyer TH; Singer PC
    Environ Sci Technol; 2008 Jan; 42(2):608-13. PubMed ID: 18284170
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sorption and desorption of perchlorate and U(VI) by strong-base anion-exchange resins.
    Gu B; Ku YK; Brown GM
    Environ Sci Technol; 2005 Feb; 39(3):901-7. PubMed ID: 15757357
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sorption of perfluorooctane sulfonate on organo-montmorillonites.
    Zhou Q; Deng S; Yu Q; Zhang Q; Yu G; Huang J; He H
    Chemosphere; 2010 Feb; 78(6):688-94. PubMed ID: 20042218
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of the sorption behaviors and mechanisms of perfluorosulfonates and perfluorocarboxylic acids on three kinds of clay minerals.
    Zhao L; Bian J; Zhang Y; Zhu L; Liu Z
    Chemosphere; 2014 Nov; 114():51-8. PubMed ID: 25113183
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of cationic and anionic surfactants on the sorption and desorption of perfluorooctane sulfonate (PFOS) on natural sediments.
    Pan G; Jia C; Zhao D; You C; Chen H; Jiang G
    Environ Pollut; 2009 Jan; 157(1):325-30. PubMed ID: 18722698
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sorption of perfluorooctane sulfonate to carbon nanotubes in aquatic sediments.
    Kwadijk CJ; Velzeboer I; Koelmans AA
    Chemosphere; 2013 Feb; 90(5):1631-6. PubMed ID: 23041036
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sorption kinetics, isotherms and mechanisms of PFOS on soils with different physicochemical properties.
    Wei C; Song X; Wang Q; Hu Z
    Ecotoxicol Environ Saf; 2017 Aug; 142():40-50. PubMed ID: 28384502
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis of some ferromagnetic composite resins and their metal removal characteristics in aqueous solutions.
    Sheha RR; El-Zahhar AA
    J Hazard Mater; 2008 Feb; 150(3):795-803. PubMed ID: 17630189
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sorption of Perfluorooctane sulfonate (PFOS) including its isomers on hydrargillite as a function of pH, humic substances and Na
    Uwayezu JN; Yeung LWY; Bäckström M
    J Environ Sci (China); 2022 Jan; 111():263-272. PubMed ID: 34949356
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Removal of chromium from electroplating industry effluents by ion exchange resins.
    Cavaco SA; Fernandes S; Quina MM; Ferreira LM
    J Hazard Mater; 2007 Jun; 144(3):634-8. PubMed ID: 17336455
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hybrid anion exchanger for trace phosphate removal from water and wastewater.
    Blaney LM; Cinar S; SenGupta AK
    Water Res; 2007 Apr; 41(7):1603-13. PubMed ID: 17306856
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of salinity and sediment characteristics on the sorption and desorption of perfluorooctane sulfonate at sediment-water interface.
    You C; Jia C; Pan G
    Environ Pollut; 2010 May; 158(5):1343-7. PubMed ID: 20181418
    [TBL] [Abstract][Full Text] [Related]  

  • 55. PFAS removal by ion exchange resins: A review.
    Dixit F; Dutta R; Barbeau B; Berube P; Mohseni M
    Chemosphere; 2021 Jun; 272():129777. PubMed ID: 33582507
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The oxidative degradation of polystyrene resins on the removal of Cr(VI) from wastewater by anion exchange.
    Xiao K; Xu F; Jiang L; Dan Z; Duan N
    Chemosphere; 2016 Aug; 156():326-333. PubMed ID: 27183334
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Understanding and modeling removal of anionic organic contaminants (AOCs) by anion exchange resins.
    Zhang H; Shields AJ; Jadbabaei N; Nelson M; Pan B; Suri RP
    Environ Sci Technol; 2014 Jul; 48(13):7494-502. PubMed ID: 24877792
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sorption mechanism and predictive models for removal of cationic organic contaminants by cation exchange resins.
    Jadbabaei N; Zhang H
    Environ Sci Technol; 2014 Dec; 48(24):14572-81. PubMed ID: 25409479
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selective removal of chromates by macroporous exchanger Amberlyst A-21.
    Mustafa S; Khalid M; Naeem A; Rehana N; Murtaza S
    Environ Technol; 2002 May; 23(5):583-90. PubMed ID: 12088381
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Removal of chromium from water and wastewater by ion exchange resins.
    Rengaraj S; Yeon KH; Moon SH
    J Hazard Mater; 2001 Oct; 87(1-3):273-87. PubMed ID: 11566415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.