These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 20605069)
21. Effect of water-extraction on characteristics of melting and solidification of fly ash from municipal solid waste incinerator. Jiang Y; Xi B; Li X; Zhang L; Wei Z J Hazard Mater; 2009 Jan; 161(2-3):871-7. PubMed ID: 18495335 [TBL] [Abstract][Full Text] [Related]
22. Characterization of a former dump site in the Lagoon of Venice contaminated by municipal solid waste incinerator bottom ash, and estimation of possible environmental risk. Rigo C; Zamengo L; Rampazzo G; Argese E Chemosphere; 2009 Oct; 77(4):510-7. PubMed ID: 19695669 [TBL] [Abstract][Full Text] [Related]
23. Polycyclic aromatic hydrocarbons in weathered bottom ash from incineration of municipal solid waste. Johansson I; van Bavel B Chemosphere; 2003 Oct; 53(2):123-8. PubMed ID: 12892674 [TBL] [Abstract][Full Text] [Related]
24. Hazardous organic compounds in urban municipal solid waste from a developing country. Swati M; Rema T; Joseph K J Hazard Mater; 2008 Dec; 160(1):213-9. PubMed ID: 18434008 [TBL] [Abstract][Full Text] [Related]
25. A role for adsorption in lead leachability from MSWI bottom ASH. Chaspoul FR; Le Droguene MF; Barban G; Rose JC; Gallice PM Waste Manag; 2008; 28(8):1324-30. PubMed ID: 17881209 [TBL] [Abstract][Full Text] [Related]
26. Metal distribution in incineration residues of municipal solid waste (MSW) in Japan. Jung CH; Matsuto T; Tanaka N; Okada T Waste Manag; 2004; 24(4):381-91. PubMed ID: 15081066 [TBL] [Abstract][Full Text] [Related]
27. The potential of recycling and reusing municipal solid waste incinerator ash in Taiwan. Huang CM; Yang WF; Ma HW; Song YR Waste Manag; 2006; 26(9):979-87. PubMed ID: 16297611 [TBL] [Abstract][Full Text] [Related]
28. Contribution of natural organic matter to copper leaching from municipal solid waste incinerator bottom ash. Van Zomeren A; Comans RN Environ Sci Technol; 2004 Jul; 38(14):3927-32. PubMed ID: 15298202 [TBL] [Abstract][Full Text] [Related]
29. Fate of heavy metals during municipal solid waste incineration in Shanghai. Zhang H; He PJ; Shao LM J Hazard Mater; 2008 Aug; 156(1-3):365-73. PubMed ID: 18215462 [TBL] [Abstract][Full Text] [Related]
30. Influence of operational conditions, waste input and ageing on contaminant leaching from waste incinerator bottom ash: a full-scale study. Hyks J; Astrup T Chemosphere; 2009 Aug; 76(9):1178-84. PubMed ID: 19595431 [TBL] [Abstract][Full Text] [Related]
31. Hydrothermal treatment of bottom ash from the incineration of municipal solid waste: retention of Cs(I), Cd(II), Pb(II) and Cr(III). Peña R; Guerrero A; Goñi S J Hazard Mater; 2006 Feb; 129(1-3):151-7. PubMed ID: 16194594 [TBL] [Abstract][Full Text] [Related]
32. Comparison of the characteristics of bottom and fly ashes generated from various incineration processes. Chang FY; Wey MY J Hazard Mater; 2006 Dec; 138(3):594-603. PubMed ID: 16839684 [TBL] [Abstract][Full Text] [Related]
33. The adsorption characteristics of heavy metals by various particle sizes of MSWI bottom ash. Shim YS; Kim YK; Kong SH; Rhee SW; Lee WK Waste Manag; 2003; 23(9):851-7. PubMed ID: 14583248 [TBL] [Abstract][Full Text] [Related]
34. Investigation of 1,4-dioxane originating from incineration residues produced by incineration of municipal solid waste. Fujiwara T; Tamada T; Kurata Y; Ono Y; Kose T; Ono Y; Nishimura F; Ohtoshi K Chemosphere; 2008 Mar; 71(5):894-901. PubMed ID: 18191439 [TBL] [Abstract][Full Text] [Related]
35. Influence of waste input and combustion technology on MSWI bottom ash quality. Rendek E; Ducom G; Germain P Waste Manag; 2007; 27(10):1403-7. PubMed ID: 17509859 [TBL] [Abstract][Full Text] [Related]
36. Influence of organic matter on municipal solid waste incinerator bottom ash carbonation. Rendek E; Ducom G; Germain P Chemosphere; 2006 Aug; 64(7):1212-8. PubMed ID: 16405953 [TBL] [Abstract][Full Text] [Related]
37. Heavy metal leaching from aerobic and anaerobic landfill bioreactors of co-disposed municipal solid waste incineration bottom ash and shredded low-organic residues. Inanc B; Inoue Y; Yamada M; Ono Y; Nagamori M J Hazard Mater; 2007 Mar; 141(3):793-802. PubMed ID: 17030419 [TBL] [Abstract][Full Text] [Related]
38. Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator. Yang Y; Xiao Y; Voncken JH; Wilson N J Hazard Mater; 2008 Jun; 154(1-3):871-9. PubMed ID: 18077086 [TBL] [Abstract][Full Text] [Related]
39. An investigation of halogens in Izmit hazardous and clinical waste incinerator. Cetin S; Veli S; Ayberk S Waste Manag; 2004; 24(2):183-91. PubMed ID: 14761757 [TBL] [Abstract][Full Text] [Related]
40. Leaching behavior of polychlorinated dibenzo-p-dioxins and furans from the fly ash and bottom ash of a municipal solid waste incinerator. Yasuhara A; Katami T Waste Manag; 2007; 27(3):439-47. PubMed ID: 16624542 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]