These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 20605250)

  • 1. Can phylogenetics identify C(4) origins and reversals?
    Christin PA; Freckleton RP; Osborne CP
    Trends Ecol Evol; 2010 Jul; 25(7):403-9. PubMed ID: 20605250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary genomics of C4 photosynthesis in grasses requires a large species sampling.
    Besnard G; Christin PA
    C R Biol; 2010 Aug; 333(8):577-81. PubMed ID: 20688277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Foundations of the new phylogenetics].
    Pavlinov IIa
    Zh Obshch Biol; 2004; 65(4):334-66. PubMed ID: 15490579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C4 Photosynthesis evolved in grasses via parallel adaptive genetic changes.
    Christin PA; Salamin N; Savolainen V; Duvall MR; Besnard G
    Curr Biol; 2007 Jul; 17(14):1241-7. PubMed ID: 17614282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenomics of C(4) photosynthesis in sedges (Cyperaceae): multiple appearances and genetic convergence.
    Besnard G; Muasya AM; Russier F; Roalson EH; Salamin N; Christin PA
    Mol Biol Evol; 2009 Aug; 26(8):1909-19. PubMed ID: 19461115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C(4) eudicots are not younger than C(4) monocots.
    Christin PA; Osborne CP; Sage RF; Arakaki M; Edwards EJ
    J Exp Bot; 2011 May; 62(9):3171-81. PubMed ID: 21393383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of C(4) phosphoenolpyruvate carboxykinase in grasses, from genotype to phenotype.
    Christin PA; Petitpierre B; Salamin N; Büchi L; Besnard G
    Mol Biol Evol; 2009 Feb; 26(2):357-65. PubMed ID: 18988688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversification of C(4) grasses (Poaceae) does not coincide with their ecological dominance.
    Bouchenak-Khelladi Y; Slingsby JA; Verboom GA; Bond WJ
    Am J Bot; 2014 Feb; 101(2):300-7. PubMed ID: 24509796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oligocene CO2 decline promoted C4 photosynthesis in grasses.
    Christin PA; Besnard G; Samaritani E; Duvall MR; Hodkinson TR; Savolainen V; Salamin N
    Curr Biol; 2008 Jan; 18(1):37-43. PubMed ID: 18160293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C₄ photosynthesis: from evolutionary analyses to strategies for synthetic reconstruction of the trait.
    Denton AK; Simon R; Weber AP
    Curr Opin Plant Biol; 2013 Jun; 16(3):315-21. PubMed ID: 23510604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of methods for rooting phylogenetic trees: a case study using Orcuttieae (Poaceae: Chloridoideae).
    Boykin LM; Kubatko LS; Lowrey TK
    Mol Phylogenet Evol; 2010 Mar; 54(3):687-700. PubMed ID: 19931622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary switch and genetic convergence on rbcL following the evolution of C4 photosynthesis.
    Christin PA; Salamin N; Muasya AM; Roalson EH; Russier F; Besnard G
    Mol Biol Evol; 2008 Nov; 25(11):2361-8. PubMed ID: 18695049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anatomical enablers and the evolution of C4 photosynthesis in grasses.
    Christin PA; Osborne CP; Chatelet DS; Columbus JT; Besnard G; Hodkinson TR; Garrison LM; Vorontsova MS; Edwards EJ
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1381-6. PubMed ID: 23267116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate, phylogeny and the ecological distribution of C4 grasses.
    Edwards EJ; Still CJ
    Ecol Lett; 2008 Mar; 11(3):266-76. PubMed ID: 18201200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drought limitation of photosynthesis differs between C₃and C₄grass species in a comparative experiment.
    Taylor SH; Ripley BS; Woodward FI; Osborne CP
    Plant Cell Environ; 2011 Jan; 34(1):65-75. PubMed ID: 20825576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex evolutionary transitions and the significance of c(3)-c(4) intermediate forms of photosynthesis in Molluginaceae.
    Christin PA; Sage TL; Edwards EJ; Ogburn RM; Khoshravesh R; Sage RF
    Evolution; 2011 Mar; 65(3):643-60. PubMed ID: 20955197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do complex population histories drive higher estimates of substitution rate in phylogenetic reconstructions?
    Ramakrishnan U; Hadly EA
    Mol Ecol; 2009 Nov; 18(21):4341-3. PubMed ID: 19845859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating Markov clustering and molecular phylogenetics to reconstruct the cyanobacterial species tree from conserved protein families.
    Swingley WD; Blankenship RE; Raymond J
    Mol Biol Evol; 2008 Apr; 25(4):643-54. PubMed ID: 18296704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relevance of phylogeny to studies of global change.
    Edwards EJ; Still CJ; Donoghue MJ
    Trends Ecol Evol; 2007 May; 22(5):243-9. PubMed ID: 17296242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positive correlations between molecular and morphological rates of evolution.
    Seligmann H
    J Theor Biol; 2010 Jun; 264(3):799-807. PubMed ID: 20298700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.