BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 20605343)

  • 41. [Comparison of the displacements of peripheral lung cancer based on 4D CT scan and 3D CT scan assisted with active breathing control].
    Qi HP; Li JB; Zhang Y; Wang W; Li FX; Wang SZ
    Zhonghua Zhong Liu Za Zhi; 2013 Jul; 35(7):514-7. PubMed ID: 24257303
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking.
    Keall PJ; Joshi S; Vedam SS; Siebers JV; Kini VR; Mohan R
    Med Phys; 2005 Apr; 32(4):942-51. PubMed ID: 15895577
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters.
    Tehrani JN; Yang Y; Werner R; Lu W; Low D; Guo X; Wang J
    Phys Med Biol; 2015 Nov; 60(22):8833-49. PubMed ID: 26531324
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Does Motion Assessment With 4-Dimensional Computed Tomographic Imaging for Non-Small Cell Lung Cancer Radiotherapy Improve Target Volume Coverage?
    Ahmed N; Venkataraman S; Johnson K; Sutherland K; Loewen SK
    Clin Med Insights Oncol; 2017; 11():1179554917698461. PubMed ID: 28469512
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cine computed tomography without respiratory surrogate in planning stereotactic radiotherapy for non-small-cell lung cancer.
    Riegel AC; Chang JY; Vedam SS; Johnson V; Chi PC; Pan T
    Int J Radiat Oncol Biol Phys; 2009 Feb; 73(2):433-41. PubMed ID: 18644683
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [4D-CT-based plan target volume (PTV) definition compared with conventional PTV definition using general margin in radiotherapy for lung cancer].
    Ju X; Li M; Zhou Z; Zhang K; Han W; Fu G; Cao Y; Wang L
    Zhonghua Zhong Liu Za Zhi; 2014 Jan; 36(1):34-8. PubMed ID: 24685084
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simulation of dosimetric consequences of 4D-CT-based motion margin estimation for proton radiotherapy using patient tumor motion data.
    Koybasi O; Mishra P; St James S; Lewis JH; Seco J
    Phys Med Biol; 2014 Feb; 59(4):853-67. PubMed ID: 24487573
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anatomical landmarks accurately determine interfractional lymph node shifts during radiotherapy of lung cancer patients.
    Hoffmann L; Holt MI; Knap MM; Khalil AA; Møller DS
    Radiother Oncol; 2015 Jul; 116(1):64-9. PubMed ID: 26096849
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Feasibility of using anatomical surrogates for predicting the position of lung tumours.
    Spoelstra FO; van der Weide L; van Sörnsen de Koste JR; Vincent A; Slotman BJ; Senan S
    Radiother Oncol; 2012 Feb; 102(2):287-9. PubMed ID: 22196680
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Four-dimensional dose reconstruction through in vivo phase matching of cine images of electronic portal imaging device.
    Yoon J; Jung JW; Kim JO; Yi BY; Yeo I
    Med Phys; 2016 Jul; 43(7):4420. PubMed ID: 27370157
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Data-driven respiratory motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) using groupwise deformable registration.
    Riblett MJ; Christensen GE; Weiss E; Hugo GD
    Med Phys; 2018 Oct; 45(10):4471-4482. PubMed ID: 30118177
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Helical mode lung 4D-CT reconstruction using Bayesian model.
    He T; Xue Z; Nitsch PL; Teh BS; Wong ST
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):33-40. PubMed ID: 24505741
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modeling respiratory motion for reducing motion artifacts in 4D CT images.
    Zhang Y; Yang J; Zhang L; Court LE; Balter PA; Dong L
    Med Phys; 2013 Apr; 40(4):041716. PubMed ID: 23556886
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthetic 4D-CT of the thorax for treatment plan adaptation on MR-guided radiotherapy systems.
    Freedman JN; Bainbridge HE; Nill S; Collins DJ; Kachelrieß M; Leach MO; McDonald F; Oelfke U; Wetscherek A
    Phys Med Biol; 2019 May; 64(11):115005. PubMed ID: 30844775
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Four dimensional digital tomosynthesis using on-board imager for the verification of respiratory motion.
    Park JC; Kim JS; Park SH; Webster MJ; Lee S; Song WY; Han Y
    PLoS One; 2014; 9(12):e115795. PubMed ID: 25541710
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 4D CT amplitude binning for the generation of a time-averaged 3D mid-position CT scan.
    Kruis MF; van de Kamer JB; Belderbos JS; Sonke JJ; van Herk M
    Phys Med Biol; 2014 Sep; 59(18):5517-29. PubMed ID: 25170633
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mooney-Rivlin biomechanical modeling of lung with Inhomogeneous material.
    Nasehi Tehrani J; Wang J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7897-900. PubMed ID: 26738123
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of the planning target volume based on three-dimensional CT and four-dimensional CT images of non-small-cell lung cancer.
    Li FX; Li JB; Zhang YJ; Liu TH; Tian SY; Xu M; Shang DP; Ma CS
    Radiother Oncol; 2011 May; 99(2):176-80. PubMed ID: 21549440
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The accuracy of extracted target motion trajectories in four-dimensional cone-beam computed tomography for lung cancer patients.
    Iramina H; Nakamura M; Iizuka Y; Mitsuyoshi T; Matsuo Y; Mizowaki T; Hiraoka M; Kanno I
    Radiother Oncol; 2016 Oct; 121(1):46-51. PubMed ID: 27528116
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantification of mediastinal and hilar lymph node movement using four-dimensional computed tomography scan: implications for radiation treatment planning.
    Sher DJ; Wolfgang JA; Niemierko A; Choi NC
    Int J Radiat Oncol Biol Phys; 2007 Dec; 69(5):1402-8. PubMed ID: 17920783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.