These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 20605621)
1. Measurement and interpretation of microbial adenosine tri-phosphate (ATP) in aquatic environments. Hammes F; Goldschmidt F; Vital M; Wang Y; Egli T Water Res; 2010 Jul; 44(13):3915-23. PubMed ID: 20605621 [TBL] [Abstract][Full Text] [Related]
2. Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes. Hammes F; Berney M; Wang Y; Vital M; Köster O; Egli T Water Res; 2008 Jan; 42(1-2):269-77. PubMed ID: 17659762 [TBL] [Abstract][Full Text] [Related]
3. Rapid, cultivation-independent assessment of microbial viability in drinking water. Berney M; Vital M; Hülshoff I; Weilenmann HU; Egli T; Hammes F Water Res; 2008 Aug; 42(14):4010-8. PubMed ID: 18694583 [TBL] [Abstract][Full Text] [Related]
4. Flow cytometry and adenosine tri-phosphate analysis: alternative possibilities to evaluate major bacteriological changes in drinking water treatment and distribution systems. Vital M; Dignum M; Magic-Knezev A; Ross P; Rietveld L; Hammes F Water Res; 2012 Oct; 46(15):4665-76. PubMed ID: 22763289 [TBL] [Abstract][Full Text] [Related]
5. The impact of industrial-scale cartridge filtration on the native microbial communities from groundwater. Wang Y; Hammes F; Egli T Water Res; 2008 Oct; 42(16):4319-26. PubMed ID: 18775553 [TBL] [Abstract][Full Text] [Related]
6. Overnight stagnation of drinking water in household taps induces microbial growth and changes in community composition. Lautenschlager K; Boon N; Wang Y; Egli T; Hammes F Water Res; 2010 Sep; 44(17):4868-77. PubMed ID: 20696451 [TBL] [Abstract][Full Text] [Related]
7. Total viable counts, ATP, and endotoxin levels as potential markers of microbial contamination of dental unit water systems. Fulford MR; Walker JT; Martin MV; Marsh PD Br Dent J; 2004 Feb; 196(3):157-9; discussion 153. PubMed ID: 14963441 [TBL] [Abstract][Full Text] [Related]
8. Optimisation and significance of ATP analysis for measuring active biomass in granular activated carbon filters used in water treatment. Magic-Knezev A; van der Kooij D Water Res; 2004 Nov; 38(18):3971-9. PubMed ID: 15380987 [TBL] [Abstract][Full Text] [Related]
9. Use of an ATP assay to determine viable microbial biomass in Fennoscandian Shield groundwater from depths of 3-1000 m. Eydal HS; Pedersen K J Microbiol Methods; 2007 Aug; 70(2):363-73. PubMed ID: 17586074 [TBL] [Abstract][Full Text] [Related]
10. Rapid and direct estimation of active biomass on granular activated carbon through adenosine tri-phosphate (ATP) determination. Velten S; Hammes F; Boller M; Egli T Water Res; 2007 May; 41(9):1973-83. PubMed ID: 17343893 [TBL] [Abstract][Full Text] [Related]
11. Bioluminescent assay of total bacterial contamination of drinking water. Frundzhyan V; Ugarova N Luminescence; 2007; 22(3):241-4. PubMed ID: 17285568 [TBL] [Abstract][Full Text] [Related]
12. Rapid detection of Escherichia coli and enterococci in recreational water using an immunomagnetic separation/adenosine triphosphate technique. Bushon RN; Brady AM; Likirdopulos CA; Cireddu JV J Appl Microbiol; 2009 Feb; 106(2):432-41. PubMed ID: 19200311 [TBL] [Abstract][Full Text] [Related]
13. Comment on "An ATP-based method for monitoring the microbiological drinking water quality in a distribution network" by E. Delahaye et al., 2003. Water Res. 37, 3689-3696. Deininger RA; Lee JY Water Res; 2005 Jul; 39(12):2778-9. PubMed ID: 15927231 [No Abstract] [Full Text] [Related]
14. An ATP-based method for monitoring the microbiological drinking water quality in a distribution network. Delahaye E; Welté B; Levi Y; Leblon G; Montiel A Water Res; 2003 Sep; 37(15):3689-96. PubMed ID: 12867336 [TBL] [Abstract][Full Text] [Related]
15. Fluorochrome and flow cytometry to monitor microorganisms in treated hospital wastewater. Li CS; Chia WC; Chen PS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Feb; 42(2):195-203. PubMed ID: 17182391 [TBL] [Abstract][Full Text] [Related]
16. A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks. Lautenschlager K; Hwang C; Liu WT; Boon N; Köster O; Vrouwenvelder H; Egli T; Hammes F Water Res; 2013 Jun; 47(9):3015-25. PubMed ID: 23557697 [TBL] [Abstract][Full Text] [Related]
17. Flow cytometry for fast microbial community fingerprinting. De Roy K; Clement L; Thas O; Wang Y; Boon N Water Res; 2012 Mar; 46(3):907-19. PubMed ID: 22192760 [TBL] [Abstract][Full Text] [Related]
18. Comparison of immunomagnetic separation/adenosine triphosphate rapid method to traditional culture-based method for E. coli and enterococci enumeration in wastewater. Bushon RN; Likirdopulos CA; Brady AM Water Res; 2009 Nov; 43(19):4940-6. PubMed ID: 19628248 [TBL] [Abstract][Full Text] [Related]
19. Development and laboratory-scale testing of a fully automated online flow cytometer for drinking water analysis. Hammes F; Broger T; Weilenmann HU; Vital M; Helbing J; Bosshart U; Huber P; Odermatt RP; Sonnleitner B Cytometry A; 2012 Jun; 81(6):508-16. PubMed ID: 22489027 [TBL] [Abstract][Full Text] [Related]
20. Flow-cytometric quantification of microbial cells on sand from water biofilters. Vignola M; Werner D; Hammes F; King LC; Davenport RJ Water Res; 2018 Oct; 143():66-76. PubMed ID: 29940363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]