BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 20605681)

  • 1. Electroenzymatic oxidation of bisphenol A (BPA) based on the hemoglobin (Hb) film in a membraneless electrochemical reactor.
    Tang T; Hou J; Ai S; Qiu Y; Ma Q; Han R
    J Hazard Mater; 2010 Sep; 181(1-3):413-8. PubMed ID: 20605681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical removal of bisphenol A based on the anodic polymerization using a column type carbon fiber electrode.
    Kuramitz H; Matsushita M; Tanaka S
    Water Res; 2004 May; 38(9):2330-7. PubMed ID: 15142794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics determination of electrogenerated hydrogen peroxide (H2O2) using carbon fiber microelectrode in electroenzymatic degradation of phenolic compounds.
    Cho SH; Jang A; Bishop PL; Moon SH
    J Hazard Mater; 2010 Mar; 175(1-3):253-7. PubMed ID: 19864057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detoxification of simulated textile wastewater using a membraneless electrochemical reactor with immobilized peroxidase.
    Cho SH; Shim J; Moon SH
    J Hazard Mater; 2009 Mar; 162(2-3):1014-8. PubMed ID: 18614281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel mechanism of bisphenol A removal during electro-enzymatic oxidative process: chain reactions from self-polymerization to cross-coupling oxidation.
    Li H; Zhao H; Liu C; Li Y; Cao H; Zhang Y
    Chemosphere; 2013 Aug; 92(10):1294-300. PubMed ID: 23732003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct electrochemistry and electrocatalysis of hemoglobin in nafion/carbon nanochip film on glassy carbon electrode.
    George S; Lee HK
    J Phys Chem B; 2009 Nov; 113(47):15445-54. PubMed ID: 19883043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative removal of bisphenol A using zero valent aluminum-acid system.
    Liu W; Zhang H; Cao B; Lin K; Gan J
    Water Res; 2011 Feb; 45(4):1872-8. PubMed ID: 21185583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amperometric biosensor based on tyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determine bisphenol A.
    Yin H; Zhou Y; Xu J; Ai S; Cui L; Zhu L
    Anal Chim Acta; 2010 Feb; 659(1-2):144-50. PubMed ID: 20103117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electro-enzymatic degradation of chlorpyrifos by immobilized hemoglobin.
    Tang T; Dong J; Ai S; Qiu Y; Han R
    J Hazard Mater; 2011 Apr; 188(1-3):92-7. PubMed ID: 21316849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel UV-Na(2)S(2)O(8)/H(2)O(2)-Fe(II,III) two-stage oxidation process.
    Huang YF; Huang YH
    J Hazard Mater; 2009 Mar; 162(2-3):1211-6. PubMed ID: 18635314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembled films of hemoglobin/laponite/chitosan: application for the direct electrochemistry and catalysis to hydrogen peroxide.
    Shan D; Han E; Xue H; Cosnier S
    Biomacromolecules; 2007 Oct; 8(10):3041-6. PubMed ID: 17824641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid phase deposition of hemoglobin/SDS/TiO2 hybrid film preserving photoelectrochemical activity.
    Wang R; Zhang J; Hu Y
    Bioelectrochemistry; 2011 Apr; 81(1):34-8. PubMed ID: 21334986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aromatic intermediate formation during oxidative degradation of Bisphenol A by homogeneous sub-stoichiometric Fenton reaction.
    Poerschmann J; Trommler U; Górecki T
    Chemosphere; 2010 May; 79(10):975-86. PubMed ID: 20394961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photooxidation of bisphenol A (BPA) in water in the presence of ferric and carboxylate salts.
    Zhou D; Wu F; Deng N; Xiang W
    Water Res; 2004 Nov; 38(19):4107-16. PubMed ID: 15491658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct electrochemistry and electrocatalysis of hemoglobin at three-dimensional gold film electrode modified with self-assembled monolayers of 3-mercaptopropylphosphonic acid.
    Chen Y; Yang XJ; Guo LR; Li J; Xia XH; Zheng LM
    Anal Chim Acta; 2009 Jun; 644(1-2):83-9. PubMed ID: 19463567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide.
    Guinea E; Arias C; Cabot PL; Garrido JA; Rodríguez RM; Centellas F; Brillas E
    Water Res; 2008 Jan; 42(1-2):499-511. PubMed ID: 17692891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical behavior of biocatalytical composite based on heme-proteins, didodecyldimethylammonium bromide and room-temperature ionic liquid.
    Xu Y; Hu C; Hu S
    Anal Chim Acta; 2010 Mar; 663(1):19-26. PubMed ID: 20172091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological assessment of bisphenol A degradation in water following direct photolysis and UV advanced oxidation.
    Chen PJ; Linden KG; Hinton DE; Kashiwada S; Rosenfeldt EJ; Kullman SW
    Chemosphere; 2006 Nov; 65(7):1094-102. PubMed ID: 16762394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of seawater on bisphenol A (BPA) degradation by Fenton reagents.
    Sajiki J; Yonekubo J
    Environ Int; 2004 Apr; 30(2):145-50. PubMed ID: 14749102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct electrochemistry and bioelectrocatalysis of hemoglobin immobilized on carbon black.
    Ma GX; Lu TH; Xia YY
    Bioelectrochemistry; 2007 Nov; 71(2):180-5. PubMed ID: 17499558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.