BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 20605897)

  • 1. New phenotyping methods for screening wheat and barley for beneficial responses to water deficit.
    Munns R; James RA; Sirault XR; Furbank RT; Jones HG
    J Exp Bot; 2010 Aug; 61(13):3499-507. PubMed ID: 20605897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Approaches to increasing the salt tolerance of wheat and other cereals.
    Munns R; James RA; Läuchli A
    J Exp Bot; 2006; 57(5):1025-43. PubMed ID: 16510517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genotypic and nutrition-dependent variation in water use efficiency and photosynthetic activity of leaves in winter wheat (Triticum aestivum L.).
    Górny AG; Garczyński S
    J Appl Genet; 2002; 43(2):145-60. PubMed ID: 12080171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermography to explore plant-environment interactions.
    Costa JM; Grant OM; Chaves MM
    J Exp Bot; 2013 Oct; 64(13):3937-49. PubMed ID: 23599272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A screening method to identify genetic variation in root growth response to a salinity gradient.
    Rahnama A; Munns R; Poustini K; Watt M
    J Exp Bot; 2011 Jan; 62(1):69-77. PubMed ID: 21118825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of salinity and water stress during the reproductive stage on growth, ion concentrations, Delta 13C, and delta 15N of durum wheat and related amphiploids.
    Yousfi S; Serret MD; Voltas J; Araus JL
    J Exp Bot; 2010 Aug; 61(13):3529-42. PubMed ID: 20660293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on dynamic changes of photosynthetic characteristics of 10 wheat (Triticum aestivum L.) genotypes during two vegetative-growth stages at water deficits.
    Hongbo S; Zongsuo L; Mingan S; Shimeng S; Zanmin H
    Colloids Surf B Biointerfaces; 2005 Jul; 43(3-4):221-7. PubMed ID: 15975772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stomatal conductance is a key parameter to assess limitations to photosynthesis and growth potential in barley genotypes.
    Jiang Q; Roche D; Monaco TA; Hole D
    Plant Biol (Stuttg); 2006 Jul; 8(4):515-21. PubMed ID: 16906488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of growth and primary metabolism of water-stressed barley roots to rehydration.
    Sicher RC; Timlin D; Bailey B
    J Plant Physiol; 2012 May; 169(7):686-95. PubMed ID: 22285575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [ABA accumulation and distribution during the leaf tissues shows its role stomatal conductance regulation under short-term salinity].
    Akhiiarova GR; Fricke W; Veselov DS; Kudoiarova GR; Veselov SIu
    Tsitologiia; 2006; 48(11):918-23. PubMed ID: 17233477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strobilurin fungicides induce changes in photosynthetic gas exchange that do not improve water use efficiency of plants grown under conditions of water stress.
    Nason MA; Farrar J; Bartlett D
    Pest Manag Sci; 2007 Dec; 63(12):1191-200. PubMed ID: 17912684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic variability for leaf growth rate and duration under water deficit in sunflower: analysis of responses at cell, organ, and plant level.
    Pereyra-Irujo GA; Velázquez L; Lechner L; Aguirrezábal LA
    J Exp Bot; 2008; 59(8):2221-32. PubMed ID: 18448477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stomatal traits as a determinant of superior salinity tolerance in wild barley.
    Kiani-Pouya A; Rasouli F; Rabbi B; Falakboland Z; Yong M; Chen ZH; Zhou M; Shabala S
    J Plant Physiol; 2020 Feb; 245():153108. PubMed ID: 31927218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosynthetic performance of invasive Pinus ponderosa and Juniperus virginiana seedlings under gradual soil water depletion.
    Bihmidine S; Bryan NM; Payne KR; Parde MR; Okalebo JA; Cooperstein SE; Awada T
    Plant Biol (Stuttg); 2010 Jul; 12(4):668-75. PubMed ID: 20636910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress.
    Khalvati MA; Hu Y; Mozafar A; Schmidhalter U
    Plant Biol (Stuttg); 2005 Nov; 7(6):706-12. PubMed ID: 16388474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of external electrical field on mobile water fraction and physiological processes in wheat (Triticum aestivum) leaves.
    Hebbar KB; Sinha SK
    Indian J Exp Biol; 2002 Aug; 40(8):957-9. PubMed ID: 12597031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genotype-dependent variation in the transpiration efficiency of plants and photosynthetic activity of flag leaves in spring barley under varied nutrition.
    Krzemińska A; Górny AG
    J Appl Genet; 2003; 44(4):481-90. PubMed ID: 14617827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional genomics of abiotic stress tolerance in cereals.
    Langridge P; Paltridge N; Fincher G
    Brief Funct Genomic Proteomic; 2006 Feb; 4(4):343-54. PubMed ID: 17202125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water deficit affects mesophyll limitation of leaves more strongly in sun than in shade in two contrasting Picea asperata populations.
    Duan B; Li Y; Zhang X; Korpelainen H; Li C
    Tree Physiol; 2009 Dec; 29(12):1551-61. PubMed ID: 19825867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared thermography in plant phenotyping for salinity tolerance.
    James RA; Sirault XR
    Methods Mol Biol; 2012; 913():173-89. PubMed ID: 22895759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.