BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 20605948)

  • 1. NMR and molecular modeling of wine tannins binding to saliva proteins: revisiting astringency from molecular and colloidal prospects.
    Cala O; Pinaud N; Simon C; Fouquet E; Laguerre M; Dufourc EJ; Pianet I
    FASEB J; 2010 Nov; 24(11):4281-90. PubMed ID: 20605948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The colloidal state of tannins impacts the nature of their interaction with proteins: the case of salivary proline-rich protein/procyanidins binding.
    Cala O; Dufourc EJ; Fouquet E; Manigand C; Laguerre M; Pianet I
    Langmuir; 2012 Dec; 28(50):17410-8. PubMed ID: 23173977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional structure and dynamics of wine tannin-saliva protein complexes. A multitechnique approach.
    Simon C; Barathieu K; Laguerre M; Schmitter JM; Fouquet E; Pianet I; Dufourc EJ
    Biochemistry; 2003 Sep; 42(35):10385-95. PubMed ID: 12950165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards a molecular interpretation of astringency: synthesis, 3D structure, colloidal state, and human saliva protein recognition of procyanidins.
    Cala O; Fabre S; Pinaud N; Dufourc EJ; Fouquet E; Laguerre M; Pianet I
    Planta Med; 2011 Jul; 77(11):1116-22. PubMed ID: 21412697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 3D structural and conformational study of procyanidin dimers in water and hydro-alcoholic media as viewed by NMR and molecular modeling.
    Tarascou I; Barathieu K; Simon C; Ducasse MA; André Y; Fouquet E; Dufourc EJ; de Freitas V; Laguerre M; Pianet I
    Magn Reson Chem; 2006 Sep; 44(9):868-80. PubMed ID: 16791908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling procyanidin self-association processes and understanding their micellar organization: a study by diffusion NMR and molecular mechanics.
    Pianet I; André Y; Ducasse MA; Tarascou I; Lartigue JC; Pinaud N; Fouquet E; Dufourc EJ; Laguerre M
    Langmuir; 2008 Oct; 24(19):11027-35. PubMed ID: 18767820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the glycosylation of human salivary proline-rich proteins on their interactions with condensed tannins.
    Sarni-Manchado P; Canals-Bosch JM; Mazerolles G; Cheynier V
    J Agric Food Chem; 2008 Oct; 56(20):9563-9. PubMed ID: 18808139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of tannin-induced trypsin inhibition: a molecular approach.
    Gonçalves R; Mateus N; Pianet I; Laguerre M; de Freitas V
    Langmuir; 2011 Nov; 27(21):13122-9. PubMed ID: 21877746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New procyanidin B3-human salivary protein complexes by mass spectrometry. Effect of salivary protein profile, tannin concentration, and time stability.
    Perez-Gregorio MR; Mateus N; De Freitas V
    J Agric Food Chem; 2014 Oct; 62(41):10038-45. PubMed ID: 25248720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical Affinity between Tannin Size and Salivary Protein Binding Abilities: Implications for Wine Astringency.
    Ma W; Waffo-Teguo P; Jourdes M; Li H; Teissedre PL
    PLoS One; 2016; 11(8):e0161095. PubMed ID: 27518822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of wine pectic polysaccharides on the interactions between condensed tannins and salivary proteins.
    Carvalho E; Mateus N; Plet B; Pianet I; Dufourc E; De Freitas V
    J Agric Food Chem; 2006 Nov; 54(23):8936-44. PubMed ID: 17090144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of both salivary protein-enological tannin interactions and astringency perception by ethanol.
    Obreque-Slíer E; Peña-Neira A; López-Solís R
    J Agric Food Chem; 2010 Mar; 58(6):3729-35. PubMed ID: 20158256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of condensed tannins addition on the astringency of red wines.
    Soares S; Sousa A; Mateus N; de Freitas V
    Chem Senses; 2012 Feb; 37(2):191-8. PubMed ID: 22086902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of the SPI (Saliva Precipitation Index) to the evaluation of red wine astringency.
    Rinaldi A; Gambuti A; Moio L
    Food Chem; 2012 Dec; 135(4):2498-504. PubMed ID: 22980834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Red wine tannins fluidify and precipitate lipid liposomes and bicelles. A role for lipids in wine tasting?
    Furlan AL; Castets A; Nallet F; Pianet I; Grélard A; Dufourc EJ; Géan J
    Langmuir; 2014 May; 30(19):5518-26. PubMed ID: 24787144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregation of a proline-rich protein induced by epigallocatechin gallate and condensed tannins: effect of protein glycosylation.
    Pascal C; Poncet-Legrand C; Cabane B; Vernhet A
    J Agric Food Chem; 2008 Aug; 56(15):6724-32. PubMed ID: 18642847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of grape and wine tannin interaction with polyproline: implications for red wine astringency.
    McRae JM; Falconer RJ; Kennedy JA
    J Agric Food Chem; 2010 Dec; 58(23):12510-8. PubMed ID: 21070019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Interaction Between Salivary Proteins and Food Tannins.
    Silva MS; García-Estévez I; Brandão E; Mateus N; de Freitas V; Soares S
    J Agric Food Chem; 2017 Aug; 65(31):6415-6424. PubMed ID: 28589723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wine tannins, saliva proteins and membrane lipids.
    Dufourc EJ
    Biochim Biophys Acta Biomembr; 2021 Oct; 1863(10):183670. PubMed ID: 34111413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactivity of human salivary proteins families toward food polyphenols.
    Soares S; Vitorino R; Osório H; Fernandes A; Venâncio A; Mateus N; Amado F; de Freitas V
    J Agric Food Chem; 2011 May; 59(10):5535-47. PubMed ID: 21417408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.