These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 20606264)

  • 1. Using a conformation-dependent stereochemical library improves crystallographic refinement of proteins.
    Tronrud DE; Berkholz DS; Karplus PA
    Acta Crystallogr D Biol Crystallogr; 2010 Jul; 66(Pt 7):834-42. PubMed ID: 20606264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformation-dependent backbone geometry restraints set a new standard for protein crystallographic refinement.
    Moriarty NW; Tronrud DE; Adams PD; Karplus PA
    FEBS J; 2014 Sep; 281(18):4061-71. PubMed ID: 24890778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A conformation-dependent stereochemical library improves crystallographic refinement even at atomic resolution.
    Tronrud DE; Karplus PA
    Acta Crystallogr D Biol Crystallogr; 2011 Aug; 67(Pt 8):699-706. PubMed ID: 21795811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformation dependence of backbone geometry in proteins.
    Berkholz DS; Shapovalov MV; Dunbrack RL; Karplus PA
    Structure; 2009 Oct; 17(10):1316-25. PubMed ID: 19836332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A complete Fourier-synthesis-based backbone-conformation-dependent library for proteins.
    Tronrud DE; Karplus PA
    Acta Crystallogr D Struct Biol; 2021 Feb; 77(Pt 2):249-266. PubMed ID: 33559613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new default restraint library for the protein backbone in Phenix: a conformation-dependent geometry goes mainstream.
    Moriarty NW; Tronrud DE; Adams PD; Karplus PA
    Acta Crystallogr D Struct Biol; 2016 Jan; 72(Pt 1):176-9. PubMed ID: 26894545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput quantum-mechanics/molecular-mechanics (ONIOM) macromolecular crystallographic refinement with PHENIX/DivCon: the impact of mixed Hamiltonian methods on ligand and protein structure.
    Borbulevych O; Martin RI; Westerhoff LM
    Acta Crystallogr D Struct Biol; 2018 Nov; 74(Pt 11):1063-1077. PubMed ID: 30387765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arginine off-kilter: guanidinium is not as planar as restraints denote.
    Moriarty NW; Liebschner D; Tronrud DE; Adams PD
    Acta Crystallogr D Struct Biol; 2020 Dec; 76(Pt 12):1159-1166. PubMed ID: 33263321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package.
    Borbulevych OY; Plumley JA; Martin RI; Merz KM; Westerhoff LM
    Acta Crystallogr D Biol Crystallogr; 2014 May; 70(Pt 5):1233-47. PubMed ID: 24816093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The critical role of QM/MM X-ray refinement and accurate tautomer/protomer determination in structure-based drug design.
    Borbulevych OY; Martin RI; Westerhoff LM
    J Comput Aided Mol Des; 2021 Apr; 35(4):433-451. PubMed ID: 33108589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure Refinement at Atomic Resolution.
    Jaskolski M
    Methods Mol Biol; 2017; 1607():549-563. PubMed ID: 28573588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved ligand geometries in crystallographic refinement using AFITT in PHENIX.
    Janowski PA; Moriarty NW; Kelley BP; Case DA; York DM; Adams PD; Warren GL
    Acta Crystallogr D Struct Biol; 2016 Sep; 72(Pt 9):1062-72. PubMed ID: 27599738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated refinement of macromolecular structures at low resolution using prior information.
    Kovalevskiy O; Nicholls RA; Murshudov GN
    Acta Crystallogr D Struct Biol; 2016 Oct; 72(Pt 10):1149-1161. PubMed ID: 27710936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformation-dependent restraints for polynucleotides: the sugar moiety.
    Kowiel M; Brzezinski D; Gilski M; Jaskolski M
    Nucleic Acids Res; 2020 Jan; 48(2):962-973. PubMed ID: 31799624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Keep it together: restraints in crystallographic refinement of macromolecule-ligand complexes.
    Steiner RA; Tucker JA
    Acta Crystallogr D Struct Biol; 2017 Feb; 73(Pt 2):93-102. PubMed ID: 28177305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stereochemistry and Validation of Macromolecular Structures.
    Wlodawer A
    Methods Mol Biol; 2017; 1607():595-610. PubMed ID: 28573590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of alternative conformations by unrestrained refinement.
    Sobolev OV; Lunin VY
    Acta Crystallogr D Biol Crystallogr; 2012 Sep; 68(Pt 9):1118-27. PubMed ID: 22948912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein imperfections: separating intrinsic from extrinsic variation of torsion angles.
    Butterfoss GL; Richardson JS; Hermans J
    Acta Crystallogr D Biol Crystallogr; 2005 Jan; 61(Pt 1):88-98. PubMed ID: 15608380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relaxation of backbone bond geometry improves protein energy landscape modeling.
    Conway P; Tyka MD; DiMaio F; Konerding DE; Baker D
    Protein Sci; 2014 Jan; 23(1):47-55. PubMed ID: 24265211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introduction to macromolecular refinement.
    Tronrud DE
    Acta Crystallogr D Biol Crystallogr; 2004 Dec; 60(Pt 12 Pt 1):2156-68. PubMed ID: 15572769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.