These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 20606318)

  • 1. Effect of geometrical structure on the biodegradation of a three-dimensionally perforated porous apatite/collagen composite bone cell scaffold.
    Hamada H; Ohshima H; Ito A; Higuchi WI; Otsuka M
    Biol Pharm Bull; 2010; 33(7):1228-32. PubMed ID: 20606318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of geometrical structure on the in vivo quality change of a three-dimensionally perforated porous bone cell scaffold made of apatite/collagen composite.
    Otsuka M; Nakagawa H; Otsuka K; Ito A; Higuchi WI
    J Biomed Mater Res B Appl Biomater; 2013 Feb; 101(2):338-45. PubMed ID: 23165697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of nanostructure on biodegradation behaviors of self-setting apatite/collagen composite cements containing vitamin K2 in rats.
    Otsuka M; Kuninaga T; Otsuka K; Higuchi WI
    J Biomed Mater Res B Appl Biomater; 2006 Oct; 79(1):176-84. PubMed ID: 16680714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of geometrical structure on drug release rate of a three-dimensionally perforated porous apatite/collagen composite cement.
    Otsuka M; Nakagawa H; Ito A; Higuchi WI
    J Pharm Sci; 2010 Jan; 99(1):286-92. PubMed ID: 19821491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone cell activity responsive drug release from biodegradable apatite/collagen nano-composite cements--in vitro dissolution medium responsive vitamin K2 release.
    Otsuka M; Hirano R
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):338-42. PubMed ID: 21458964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of carbonate apatite/collagen composite membrane and its controlled release of carbonate apatite.
    Matsumoto T; Okazaki M; Inoue M; Ode S; Chang-Chien C; Nakao H; Hamada Y; Takahashi J
    J Biomed Mater Res; 2002 Jun; 60(4):651-6. PubMed ID: 11948524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of setting atmosphere on apatite cement resorption: An in vitro and in vivo study.
    Cahyanto A; Tsuru K; Ishikawa K
    J Mech Behav Biomed Mater; 2018 Dec; 88():463-469. PubMed ID: 30218975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable ceramic-collagen composite implanted in rabbit tibiae.
    Suh H; Lee C
    ASAIO J; 1995; 41(3):M652-6. PubMed ID: 8573885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride.
    Miyazaki T; Ohtsuki C; Kyomoto M; Tanihara M; Mori A; Kuramoto K
    J Biomed Mater Res A; 2003 Dec; 67(4):1417-23. PubMed ID: 14624530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of apatite-collagen complexes.
    Doi Y; Horiguchi T; Moriwaki Y; Kitago H; Kajimoto T; Iwayama Y
    J Biomed Mater Res; 1996 May; 31(1):43-9. PubMed ID: 8731148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Investigation of biocompatibility of the apatite cement].
    Pielka S; Juszkiewicz W; Rutowski R; Staniszewska-Kuś J; Solski L
    Polim Med; 2003; 33(3):13-8. PubMed ID: 14696520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale imaging of mineral crystals inside biological composite materials using X-ray diffraction microscopy.
    Jiang H; Ramunno-Johnson D; Song C; Amirbekian B; Kohmura Y; Nishino Y; Takahashi Y; Ishikawa T; Miao J
    Phys Rev Lett; 2008 Jan; 100(3):038103. PubMed ID: 18233041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluoride deposition in the bones of rats determined by fluoride and X-ray diffraction analysis.
    Gedalia I; Mayer I; Giron J; Deutsch D
    Arch Oral Biol; 1982; 27(10):823-5. PubMed ID: 6961895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro studies of novel CaO-SiO2-MgO system composite bioceramics.
    Ni S; Chang J; Chou L
    J Mater Sci Mater Med; 2008 Jan; 19(1):359-67. PubMed ID: 17607509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone tissue engineering using porous carbonate apatite and bone marrow cells.
    Kasai T; Sato K; Kanematsu Y; Shikimori M; Kanematsu N; Doi Y
    J Craniofac Surg; 2010 Mar; 21(2):473-8. PubMed ID: 20489453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronous disruption of anisotropic arrangement of the osteocyte network and collagen/apatite in melanoma bone metastasis.
    Sekita A; Matsugaki A; Ishimoto T; Nakano T
    J Struct Biol; 2017 Mar; 197(3):260-270. PubMed ID: 27989794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization, physicochemical properties and biocompatibility of La-incorporated apatites.
    Guo DG; Wang AH; Han Y; Xu KW
    Acta Biomater; 2009 Nov; 5(9):3512-23. PubMed ID: 19477306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resorption of apatite-wollastonite containing glass-ceramic and beta-tricalcium phosphate in vivo.
    Teramoto H; Kawai A; Sugihara S; Yoshida A; Inoue H
    Acta Med Okayama; 2005 Oct; 59(5):201-7. PubMed ID: 16286959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of nutrient channels on ectopic bone formation in porous apatite blocks impregnated with super fine bone powder].
    Mineno S
    Kokubyo Gakkai Zasshi; 2007 Jun; 74(2):119-30. PubMed ID: 17682459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apatite-coated collagen scaffold for bone morphogenetic protein-2 delivery.
    Yang HS; La WG; Bhang SH; Lee TJ; Lee M; Kim BS
    Tissue Eng Part A; 2011 Sep; 17(17-18):2153-64. PubMed ID: 21529263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.