BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 20607161)

  • 41. Hierarchical weeping willow nano-tree growth and effect of branching on dye-sensitized solar cell efficiency.
    Herman I; Yeo J; Hong S; Lee D; Nam KH; Choi JH; Hong WH; Lee D; Grigoropoulos CP; Ko SH
    Nanotechnology; 2012 May; 23(19):194005. PubMed ID: 22538967
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Room-temperature chemical integration of ZnO nanoarchitectures on plastic substrates for flexible dye-sensitized solar cells.
    Chang GJ; Lin SY; Wu JJ
    Nanoscale; 2014; 6(3):1329-34. PubMed ID: 24362771
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers.
    Dürr M; Schmid A; Obermaier M; Rosselli S; Yasuda A; Nelles G
    Nat Mater; 2005 Aug; 4(8):607-11. PubMed ID: 16041379
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Macroporous SnO2 synthesized via a template-assisted reflux process for efficient dye-sensitized solar cells.
    Li KN; Wang YF; Xu YF; Chen HY; Su CY; Kuang DB
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5105-11. PubMed ID: 23692298
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO(2) photoelectrodes.
    Yamaguchi T; Tobe N; Matsumoto D; Arakawa H
    Chem Commun (Camb); 2007 Dec; (45):4767-9. PubMed ID: 18004435
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Design of SnO₂ Aggregate/Nanosheet Composite Structures Based on Function-Matching Strategy for Enhanced Dye-Sensitized Solar Cell Performance.
    Wang D; Liu S; Shao M; Zhao J; Gu Y; Li Q; Zhang X; Zhao J; Fang Y
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30235798
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The influence of charge transport and recombination on the performance of dye-sensitized solar cells.
    Wang M; Chen P; Humphry-Baker R; Zakeeruddin SM; Grätzel M
    Chemphyschem; 2009 Jan; 10(1):290-9. PubMed ID: 19115326
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Novel dye-sensitized solar cell architecture using TiO2-coated vertically aligned carbon nanofiber arrays.
    Liu J; Kuo YT; Klabunde KJ; Rochford C; Wu J; Li J
    ACS Appl Mater Interfaces; 2009 Aug; 1(8):1645-9. PubMed ID: 20355778
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Network structured SnO2/ZnO heterojunction nanocatalyst with high photocatalytic activity.
    Zheng L; Zheng Y; Chen C; Zhan Y; Lin X; Zheng Q; Wei K; Zhu J
    Inorg Chem; 2009 Mar; 48(5):1819-25. PubMed ID: 19235945
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dye-sensitized solar cells based on WO3.
    Zheng H; Tachibana Y; Kalantar-Zadeh K
    Langmuir; 2010 Dec; 26(24):19148-52. PubMed ID: 21077615
    [TBL] [Abstract][Full Text] [Related]  

  • 51. First principles modeling of eosin-loaded ZnO films: a step toward the understanding of dye-sensitized solar cell performances.
    Labat F; Ciofini I; Hratchian HP; Frisch M; Raghavachari K; Adamo C
    J Am Chem Soc; 2009 Oct; 131(40):14290-8. PubMed ID: 19761184
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes.
    Lee WJ; Ramasamy E; Lee DY; Song JS
    ACS Appl Mater Interfaces; 2009 Jun; 1(6):1145-9. PubMed ID: 20355903
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ZnO nanowire arrays coating on TiO2 nanoparticles as a composite photoanode for a high efficiency DSSC.
    Wang M; Wang Y; Li J
    Chem Commun (Camb); 2011 Oct; 47(40):11246-8. PubMed ID: 21927769
    [TBL] [Abstract][Full Text] [Related]  

  • 54. ZnO hierarchical structures for efficient quasi-solid dye-sensitized solar cells.
    Cheng C; Shi Y; Zhu C; Li W; Wang L; Fung KK; Wang N
    Phys Chem Chem Phys; 2011 Jun; 13(22):10631-4. PubMed ID: 21556443
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Novel ZnO nanostructured electrodes for higher power conversion efficiencies in polymeric solar cells.
    Ajuria J; Etxebarria I; Azaceta E; Tena-Zaera R; Fernández-Montcada N; Palomares E; Pacios R
    Phys Chem Chem Phys; 2011 Dec; 13(46):20871-6. PubMed ID: 22005779
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Low-temperature CVD synthesis of patterned core-shell VO2@ZnO nanotetrapods and enhanced temperature-dependent field-emission properties.
    Yin H; Yu K; Song C; Wang Z; Zhu Z
    Nanoscale; 2014 Oct; 6(20):11820-7. PubMed ID: 25163668
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells.
    Gao F; Wang Y; Shi D; Zhang J; Wang M; Jing X; Humphry-Baker R; Wang P; Zakeeruddin SM; Grätzel M
    J Am Chem Soc; 2008 Aug; 130(32):10720-8. PubMed ID: 18642907
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metal-free organic dye sensitized solar cell based on perpendicular zinc oxide nanosheet thick films with high conversion efficiency.
    Hosono E; Mitsui Y; Zhou H
    Dalton Trans; 2008 Oct; (40):5439-41. PubMed ID: 19082024
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Large-scale synthesis and microstructure of SnO2 nanowires coated with quantum-sized ZnO nanocrystals on a mesh substrate.
    Yu W; Li X; Gao X; Wu F
    J Phys Chem B; 2005 Sep; 109(36):17078-81. PubMed ID: 16853177
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Low-temperature UV processing of nanoporous SnO₂ layers for dye-sensitized solar cells.
    Tebby Z; Uddin T; Nicolas Y; Olivier C; Toupance T; Labrugère C; Hirsch L
    ACS Appl Mater Interfaces; 2011 May; 3(5):1485-91. PubMed ID: 21443254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.