BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 20607230)

  • 21. Bioremediation of 1,2-dichloroethane contaminated groundwater: Microcosm and microbial diversity studies.
    Wang SY; Kuo YC; Huang YZ; Huang CW; Kao CM
    Environ Pollut; 2015 Aug; 203():97-106. PubMed ID: 25863886
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.
    Bennett P; He F; Zhao D; Aiken B; Feldman L
    J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reductive dechlorination of 1, 2-dichloroethane using anaerobic sequencing batch reactor (ASBR).
    Gupta SK; Mali SC
    Water Sci Technol; 2008; 57(2):225-9. PubMed ID: 18235175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isotope analysis as a natural reaction probe to determine mechanisms of biodegradation of 1,2-dichloroethane.
    Hirschorn SK; Dinglasan-Panlilio MJ; Edwards EA; Lacrampe-Couloume G; Sherwood Lollar B
    Environ Microbiol; 2007 Jul; 9(7):1651-7. PubMed ID: 17564600
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reductive biodegradation of 1,2-dichloroethane by methanogenic granular sludge: perspectives for in situ remediation.
    De Wildeman S; Nollet H; Van Langenhove H; Diekert G; Verstraete W
    Water Sci Technol; 2002; 45(10):43-8. PubMed ID: 12188575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [High Efficiency Removal of 1,2-Dichloroethane from Groundwater by Microscale Zero-valent Iron Combined with Biological Carbon Source].
    Wu NJ; Song Y; Wei WX; Wang HJ; Sun ZP
    Huan Jing Ke Xue; 2019 Mar; 40(3):1302-1309. PubMed ID: 31087978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of biostimulation and bioaugmentation for removing chlorinated volatile organic compounds from groundwater at a former manufacture plant.
    Zhang S; Hou Z; Du XM; Li DM; Lu XX
    Biodegradation; 2016 Nov; 27(4-6):223-236. PubMed ID: 27351716
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacterial diversity and reductive dehalogenase redundancy in a 1,2-dichloroethane-degrading bacterial consortium enriched from a contaminated aquifer.
    Marzorati M; Balloi A; de Ferra F; Corallo L; Carpani G; Wittebolle L; Verstraete W; Daffonchio D
    Microb Cell Fact; 2010 Feb; 9():12. PubMed ID: 20170484
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Natural attenuation of chlorinated organics in a shallow sand aquifer.
    Nobre RC; Nobre MM
    J Hazard Mater; 2004 Jul; 110(1-3):129-37. PubMed ID: 15177734
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogeochemical and biological processes affecting the long-term performance of an iron-based permeable reactive barrier.
    Zolla V; Freyria FS; Sethi R; Di Molfetta A
    J Environ Qual; 2009; 38(3):897-908. PubMed ID: 19329678
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Zero valent iron remediation of a mixed brominated ethene contaminated groundwater.
    Cohen EL; Patterson BM; McKinley AJ; Prommer H
    J Contam Hydrol; 2009 Jan; 103(3-4):109-18. PubMed ID: 18990465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using sequential H
    Le ST; Israpanich A; Phenrat T
    Chemosphere; 2022 Oct; 305():135376. PubMed ID: 35716714
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of microbial communities in the aqueous phase of a constructed model wetland treating 1,2-dichloroethene-contaminated groundwater.
    Imfeld G; Aragonés CE; Fetzer I; Mészáros E; Zeiger S; Nijenhuis I; Nikolausz M; Delerce S; Richnow HH
    FEMS Microbiol Ecol; 2010 Apr; 72(1):74-88. PubMed ID: 20100182
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two distinct Dehalobacter strains sequentially dechlorinate 1,1,1-trichloroethane and 1,1-dichloroethane at a field site treated with granular zero valent iron and guar gum.
    Yang MI; Previdsa M; Edwards EA; Sleep BE
    Water Res; 2020 Nov; 186():116310. PubMed ID: 32858243
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enrichment of Dehalococcoides mccartyi spp. from a municipal activated sludge during AQDS-mediated bioelectrochemical dechlorination of 1,2-dichloroethane to ethene.
    Leitão P; Rossetti S; Danko AS; Nouws H; Aulenta F
    Bioresour Technol; 2016 Aug; 214():426-431. PubMed ID: 27155798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane-aerated biofilm reactor for the removal of 1,2-dichloroethane by Pseudomonas sp. strain DCA1.
    Hage JC; Van Houten RT; Tramper J; Hartmans S
    Appl Microbiol Biotechnol; 2004 Jun; 64(5):718-25. PubMed ID: 15034684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stability of multi-permeable reactive barriers for long term removal of mixed contaminants.
    Lee JY; Lee KJ; Youm SY; Lee MR; Kamala-Kannan S; Oh BT
    Bull Environ Contam Toxicol; 2010 Feb; 84(2):250-4. PubMed ID: 19949770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of 1,2-dichloroethane in groundwater using Fenton oxidation.
    Jeong WG; Kim JG; Baek K
    J Hazard Mater; 2022 Apr; 428():128253. PubMed ID: 35033913
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polyhydroxyalkanoate (PHB) as a slow-release electron donor for advanced in situ bioremediation of chlorinated solvent-contaminated aquifers.
    Baric M; Pierro L; Pietrangeli B; Papini MP
    N Biotechnol; 2014 Jun; 31(4):377-82. PubMed ID: 24185077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbial methane production in deep aquifer associated with the accretionary prism in Japan.
    Kimura H; Nashimoto H; Shimizu M; Hattori S; Yamada K; Koba K; Yoshida N; Kato K
    ISME J; 2010 Apr; 4(4):531-41. PubMed ID: 19956275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.