These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 2060756)
1. Biochemical changes associated with the antifungal action of the triazole ICI 153,066 on Candida albicans and Trichophyton quinckeanum. Barrett-Bee K; Newboult L; Pinder P FEMS Microbiol Lett; 1991 Apr; 63(2-3):127-31. PubMed ID: 2060756 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of action of efinaconazole, a novel triazole antifungal agent. Tatsumi Y; Nagashima M; Shibanushi T; Iwata A; Kangawa Y; Inui F; Siu WJ; Pillai R; Nishiyama Y Antimicrob Agents Chemother; 2013 May; 57(5):2405-9. PubMed ID: 23459486 [TBL] [Abstract][Full Text] [Related]
3. Biochemical mode of action and enantiomeric selectivity of SDZ 89-485, a new triazole antimycotic. Ryder NS J Med Vet Mycol; 1990; 28(5):385-94. PubMed ID: 2283585 [TBL] [Abstract][Full Text] [Related]
4. Selective inhibition of 14 alpha-desmethyl sterol synthesis in Candida albicans by terconazole, a new triazole antimycotic. Isaacson DM; Tolman EL; Tobia AJ; Rosenthale ME; McGuire JL; Vanden Bossche H; Janssen PA J Antimicrob Chemother; 1988 Mar; 21(3):333-43. PubMed ID: 3129389 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of azole antifungal activity as determined by liquid chromatographic/mass spectrometric monitoring of ergosterol biosynthesis. Heimark L; Shipkova P; Greene J; Munayyer H; Yarosh-Tomaine T; DiDomenico B; Hare R; Pramanik BN J Mass Spectrom; 2002 Mar; 37(3):265-9. PubMed ID: 11921367 [TBL] [Abstract][Full Text] [Related]
6. Biochemical studies with a novel antifungal agent, ICI 195,739. Barrett-Bee K; Lees J; Pinder P; Campbell J; Newboult L Ann N Y Acad Sci; 1988; 544():231-44. PubMed ID: 3063170 [No Abstract] [Full Text] [Related]
7. The novel azole R126638 is a selective inhibitor of ergosterol synthesis in Candida albicans, Trichophyton spp., and Microsporum canis. Vanden Bossche H; Ausma J; Bohets H; Vermuyten K; Willemsens G; Marichal P; Meerpoel L; Odds F; Borgers M Antimicrob Agents Chemother; 2004 Sep; 48(9):3272-8. PubMed ID: 15328084 [TBL] [Abstract][Full Text] [Related]
8. Effects of antifungal agents on ergosterol biosynthesis in Candida albicans and Trichophyton mentagrophytes: differential inhibitory sites of naphthiomate and miconazole. Morita T; Nozawa Y J Invest Dermatol; 1985 Nov; 85(5):434-7. PubMed ID: 3902987 [TBL] [Abstract][Full Text] [Related]
9. Effects of terconazole and other azole antifungal agents on the sterol and carbohydrate composition of Candida albicans. Pfaller MA; Riley J; Koerner T Diagn Microbiol Infect Dis; 1990; 13(1):31-5. PubMed ID: 2184984 [TBL] [Abstract][Full Text] [Related]
10. The mode of antifungal action of tolnaftate. Barrett-Bee KJ; Lane AC; Turner RW J Med Vet Mycol; 1986 Apr; 24(2):155-60. PubMed ID: 3522841 [TBL] [Abstract][Full Text] [Related]
11. Specific inhibition of fungal sterol biosynthesis by SF 86-327, a new allylamine antimycotic agent. Ryder NS Antimicrob Agents Chemother; 1985 Feb; 27(2):252-6. PubMed ID: 4039119 [TBL] [Abstract][Full Text] [Related]
12. Saperconazole: a selective inhibitor of the cytochrome P-450-dependent ergosterol synthesis in Candida albicans, Aspergillus fumigatus and Trichophyton mentagrophytes. Vanden Bossche H; Marichal P; Willemsens G; Bellens D; Gorrens J; Roels I; Coene MC; Le Jeune L; Janssen PA Mycoses; 1990; 33(7-8):335-52. PubMed ID: 2090934 [TBL] [Abstract][Full Text] [Related]
13. Bifonazole and clotrimazole. Their mode of action and the possible reason for the fungicidal behaviour of bifonazole. Berg D; Regel E; Harenberg HE; Plempel M Arzneimittelforschung; 1984; 34(2):139-46. PubMed ID: 6372801 [TBL] [Abstract][Full Text] [Related]
15. Inhibitory effect of a new mycotic agent, piritetrate on ergosterol biosynthesis in pathogenic fungi. Morita T; Iwata K; Nozawa Y J Med Vet Mycol; 1989; 27(1):17-25. PubMed ID: 2666631 [TBL] [Abstract][Full Text] [Related]
16. Antifungal activity of xanthones: evaluation of their effect on ergosterol biosynthesis by high-performance liquid chromatography. Pinto E; Afonso C; Duarte S; Vale-Silva L; Costa E; Sousa E; Pinto M Chem Biol Drug Des; 2011 Mar; 77(3):212-22. PubMed ID: 21244637 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of sterol 4-demethylation in Candida albicans by 6-amino-2-n-pentylthiobenzothiazole, a novel mechanism of action for an antifungal agent. Kuchta T; Léka C; Farkas P; Bujdáková H; Belajová E; Russell NJ Antimicrob Agents Chemother; 1995 Jul; 39(7):1538-41. PubMed ID: 7492100 [TBL] [Abstract][Full Text] [Related]
18. Cytochrome P-450-dependent 14 alpha-demethylation of lanosterol in Candida albicans. Hitchcock CA; Brown SB; Evans EG; Adams DJ Biochem J; 1989 Jun; 260(2):549-56. PubMed ID: 2669735 [TBL] [Abstract][Full Text] [Related]
19. Effect of the antimycotic drug naftifine on growth of and sterol biosynthesis in Candida albicans. Ryder NS; Seidl G; Troke PF Antimicrob Agents Chemother; 1984 Apr; 25(4):483-7. PubMed ID: 6375557 [TBL] [Abstract][Full Text] [Related]
20. A non-azole inhibitor of lanosterol 14 alpha-methyl demethylase in Candida albicans. Capobianco JO; Doran CC; Goldman RC; De B J Antimicrob Chemother; 1992 Dec; 30(6):781-90. PubMed ID: 1289352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]