These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 20607696)

  • 1. The measured and calculated affinity of methyl- and methoxy-substituted benzoquinones for the Q(A) site of bacterial reaction centers.
    Zheng Z; Dutton PL; Gunner MR
    Proteins; 2010 Sep; 78(12):2638-54. PubMed ID: 20607696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculated protein and proton motions coupled to electron transfer: electron transfer from QA- to QB in bacterial photosynthetic reaction centers.
    Alexov EG; Gunner MR
    Biochemistry; 1999 Jun; 38(26):8253-70. PubMed ID: 10387071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-cofactor interactions in bacterial reaction centers from Rhodobacter sphaeroides R-26: effect of hydrogen bonding on the electronic and geometric structure of the primary quinone. A density functional theory study.
    Sinnecker S; Flores M; Lubitz W
    Phys Chem Chem Phys; 2006 Dec; 8(48):5659-70. PubMed ID: 17149487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absence of large-scale displacement of quinone QB in bacterial photosynthetic reaction centers.
    Breton J
    Biochemistry; 2004 Mar; 43(12):3318-26. PubMed ID: 15035603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein control of the redox potential of the primary quinone acceptor in reactioncCenters from Rhodobacter sphaeroides.
    Takahashi E; Wells TA; Wraight CA
    Biochemistry; 2001 Jan; 40(4):1020-8. PubMed ID: 11170424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling of electron transfer to proton uptake at the Q(B) site of the bacterial reaction center: a perspective from FTIR difference spectroscopy.
    Nabedryk E; Breton J
    Biochim Biophys Acta; 2008 Oct; 1777(10):1229-48. PubMed ID: 18671937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow dissociation of a charged ligand: analysis of the primary quinone Q(A) site of photosynthetic bacterial reaction centers.
    Madeo J; Mihajlovic M; Lazaridis T; Gunner MR
    J Am Chem Soc; 2011 Nov; 133(43):17375-85. PubMed ID: 21863833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the primary electron acceptor (QA)-site of the bacterial reaction center from Rhodobacter sphaeroides. Binding mode of vitamin K derivatives.
    Hucke O; Schmid R; Labahn A
    Eur J Biochem; 2002 Feb; 269(4):1096-108. PubMed ID: 11856340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An isotope-edited FTIR investigation of the role of Ser-L223 in binding quinone (QB) and semiquinone (QB-) in the reaction center from Rhodobacter sphaeroides.
    Nabedryk E; Paddock ML; Okamura MY; Breton J
    Biochemistry; 2005 Nov; 44(44):14519-27. PubMed ID: 16262252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction and protonation of the secondary quinone acceptor of Rhodobacter sphaeroides photosynthetic reaction center: kinetic model based on a comparison of wild-type chromatophores with mutants carrying Arg-->Ile substitution at sites 207 and 217 in the L-subunit.
    Cherepanov DA; Bibikov SI; Bibikova MV; Bloch DA; Drachev LA; Gopta OA; Oesterhelt D; Semenov AY; Mulkidjanian AY
    Biochim Biophys Acta; 2000 Jul; 1459(1):10-34. PubMed ID: 10924896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental resolution of the free energies of aqueous solvation contributions to ligand-protein binding: quinone-QA site interactions in the photosynthetic reaction center protein.
    Warncke K; Dutton PL
    Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2920-4. PubMed ID: 8464908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetics of quinone-dependent electron and proton transfers in Rhodobacter sphaeroides photosynthetic reaction centers.
    Zhu Z; Gunner MR
    Biochemistry; 2005 Jan; 44(1):82-96. PubMed ID: 15628848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protonation of interacting residues in a protein by a Monte Carlo method: application to lysozyme and the photosynthetic reaction center of Rhodobacter sphaeroides.
    Beroza P; Fredkin DR; Okamura MY; Feher G
    Proc Natl Acad Sci U S A; 1991 Jul; 88(13):5804-8. PubMed ID: 2062860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quinone (QB) reduction by B-branch electron transfer in mutant bacterial reaction centers from Rhodobacter sphaeroides: quantum efficiency and X-ray structure.
    Paddock ML; Chang C; Xu Q; Abresch EC; Axelrod HL; Feher G; Okamura MY
    Biochemistry; 2005 May; 44(18):6920-8. PubMed ID: 15865437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron transfer between the quinones in the photosynthetic reaction center and its coupling to conformational changes.
    Rabenstein B; Ullmann GM; Knapp EW
    Biochemistry; 2000 Aug; 39(34):10487-96. PubMed ID: 10956039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [On the electron stabilization within the quinone acceptor part of Rhodobacter sphaeroides photosynthetic reaction centers].
    Noks PP; Krasil'nikov PM; Mamonov PA; Seĭfullina NKh; Uchoa AF; Baptista MS
    Biofizika; 2008; 53(4):624-31. PubMed ID: 18819279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox potential tuning through differential quinone binding in the photosynthetic reaction center of Rhodobacter sphaeroides.
    Vermaas JV; Taguchi AT; Dikanov SA; Wraight CA; Tajkhorshid E
    Biochemistry; 2015 Mar; 54(12):2104-16. PubMed ID: 25734689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox potential of quinones in photosynthetic reaction centers from Rhodobacter sphaeroides: dependence on protonation of Glu-L212 and Asp-L213.
    Ishikita H; Morra G; Knapp EW
    Biochemistry; 2003 Apr; 42(13):3882-92. PubMed ID: 12667079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The unusually strong hydrogen bond between the carbonyl of Q(A) and His M219 in the Rhodobacter sphaeroides reaction center is not essential for efficient electron transfer from Q(A)(-) to Q(B).
    Breton J; Lavergne J; Wakeham MC; Nabedryk E; Jones MR
    Biochemistry; 2007 Jun; 46(22):6468-76. PubMed ID: 17497939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the effects of mutations on the free energy of the first electron transfer from QA- to QB in photosynthetic reaction centers.
    Alexov E; Miksovska J; Baciou L; Schiffer M; Hanson DK; Sebban P; Gunner MR
    Biochemistry; 2000 May; 39(20):5940-52. PubMed ID: 10821665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.