These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 20607702)

  • 1. Can self-inhibitory peptides be derived from the interfaces of globular protein-protein interactions?
    London N; Raveh B; Movshovitz-Attias D; Schueler-Furman O
    Proteins; 2010 Nov; 78(15):3140-9. PubMed ID: 20607702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling beta-sheet peptide-protein interactions: Rosetta FlexPepDock in CAPRI rounds 38-45.
    Khramushin A; Marcu O; Alam N; Shimony O; Padhorny D; Brini E; Dill KA; Vajda S; Kozakov D; Schueler-Furman O
    Proteins; 2020 Aug; 88(8):1037-1049. PubMed ID: 31891416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Docking proteins and peptides under evolutionary constraints in Critical Assessment of PRediction of Interactions rounds 38 to 45.
    Nadaradjane AA; Quignot C; Traoré S; Andreani J; Guerois R
    Proteins; 2020 Aug; 88(8):986-998. PubMed ID: 31746034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of human and server prediction in CAPRI rounds 38-45.
    Duan R; Qiu L; Xu X; Ma Z; Merideth BR; Shyu CR; Zou X
    Proteins; 2020 Aug; 88(8):1110-1120. PubMed ID: 32483825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FlexPepDock lessons from CAPRI peptide-protein rounds and suggested new criteria for assessment of model quality and utility.
    Marcu O; Dodson EJ; Alam N; Sperber M; Kozakov D; Lensink MF; Schueler-Furman O
    Proteins; 2017 Mar; 85(3):445-462. PubMed ID: 28002624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure prediction of biological assemblies using GALAXY in CAPRI rounds 38-45.
    Park T; Woo H; Baek M; Yang J; Seok C
    Proteins; 2020 Aug; 88(8):1009-1017. PubMed ID: 31774573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Template-based modeling and ab-initio docking using CoDock in CAPRI.
    Kong R; Liu RR; Xu XM; Zhang DW; Xu XS; Shi H; Chang S
    Proteins; 2020 Aug; 88(8):1100-1109. PubMed ID: 32181952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy-based graph convolutional networks for scoring protein docking models.
    Cao Y; Shen Y
    Proteins; 2020 Aug; 88(8):1091-1099. PubMed ID: 32144844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges and opportunities of automated protein-protein docking: HDOCK server vs human predictions in CAPRI Rounds 38-46.
    Yan Y; He J; Feng Y; Lin P; Tao H; Huang SY
    Proteins; 2020 Aug; 88(8):1055-1069. PubMed ID: 31994779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of ZDOCK and IRAD in CAPRI rounds 39-45.
    Vreven T; Vangaveti S; Borrman TM; Gaines JC; Weng Z
    Proteins; 2020 Aug; 88(8):1050-1054. PubMed ID: 31994784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ClusPro in rounds 38 to 45 of CAPRI: Toward combining template-based methods with free docking.
    Padhorny D; Porter KA; Ignatov M; Alekseenko A; Beglov D; Kotelnikov S; Ashizawa R; Desta I; Alam N; Sun Z; Brini E; Dill K; Schueler-Furman O; Vajda S; Kozakov D
    Proteins; 2020 Aug; 88(8):1082-1090. PubMed ID: 32142178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lessons from (co-)evolution in the docking of proteins and peptides for CAPRI Rounds 28-35.
    Yu J; Andreani J; Ochsenbein F; Guerois R
    Proteins; 2017 Mar; 85(3):378-390. PubMed ID: 27701780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pyDock scoring for the new modeling challenges in docking: Protein-peptide, homo-multimers, and domain-domain interactions.
    Pallara C; Jiménez-García B; Romero M; Moal IH; Fernández-Recio J
    Proteins; 2017 Mar; 85(3):487-496. PubMed ID: 27701776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Template-based modeling of diverse protein interactions in CAPRI rounds 38-45.
    Dapkūnas J; Kairys V; Olechnovič K; Venclovas Č
    Proteins; 2020 Aug; 88(8):939-947. PubMed ID: 31697420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coarse-grained and atomic resolution biomolecular docking with the ATTRACT approach.
    Glashagen G; de Vries S; Uciechowska-Kaczmarzyk U; Samsonov SA; Murail S; Tuffery P; Zacharias M
    Proteins; 2020 Aug; 88(8):1018-1028. PubMed ID: 31785163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel peptide-mediated interactions derived from high-resolution 3-dimensional structures.
    Stein A; Aloy P
    PLoS Comput Biol; 2010 May; 6(5):e1000789. PubMed ID: 20502673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative modeling of protein-protein interactions with pyDock for the new docking challenges.
    Rosell M; Rodríguez-Lumbreras LA; Romero-Durana M; Jiménez-García B; Díaz L; Fernández-Recio J
    Proteins; 2020 Aug; 88(8):999-1008. PubMed ID: 31746039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contextual specificity in peptide-mediated protein interactions.
    Stein A; Aloy P
    PLoS One; 2008 Jul; 3(7):e2524. PubMed ID: 18596940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An overview of data-driven HADDOCK strategies in CAPRI rounds 38-45.
    Koukos PI; Roel-Touris J; Ambrosetti F; Geng C; Schaarschmidt J; Trellet ME; Melquiond ASJ; Xue LC; Honorato RV; Moreira I; Kurkcuoglu Z; Vangone A; Bonvin AMJJ
    Proteins; 2020 Aug; 88(8):1029-1036. PubMed ID: 31886559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of MDockPP in CAPRI rounds 28-29 and 31-35 including the prediction of water-mediated interactions.
    Xu X; Qiu L; Yan C; Ma Z; Grinter SZ; Zou X
    Proteins; 2017 Mar; 85(3):424-434. PubMed ID: 27802576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.