BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 20607814)

  • 1. Induction of reactive oxygen species and algal growth inhibition by tritiated water with or without copper.
    Réty C; Gilbin R; Gomez E
    Environ Toxicol; 2012 Mar; 27(3):155-65. PubMed ID: 20607814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii.
    Cheloni G; Marti E; Slaveykova VI
    Aquat Toxicol; 2016 Jan; 170():120-128. PubMed ID: 26655656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii.
    Saison C; Perreault F; Daigle JC; Fortin C; Claverie J; Morin M; Popovic R
    Aquat Toxicol; 2010 Jan; 96(2):109-14. PubMed ID: 19883948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute effects of a prooxidant herbicide on the microalga Chlamydomonas reinhardtii: Screening cytotoxicity and genotoxicity endpoints.
    Esperanza M; Cid Á; Herrero C; Rioboo C
    Aquat Toxicol; 2015 Aug; 165():210-21. PubMed ID: 26117094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative stress in the algae Chlamydomonas reinhardtii exposed to biocides.
    Almeida AC; Gomes T; Langford K; Thomas KV; Tollefsen KE
    Aquat Toxicol; 2017 Aug; 189():50-59. PubMed ID: 28582701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress potential of the herbicides bifenox and metribuzin in the microalgae Chlamydomonas reinhardtii.
    Almeida AC; Gomes T; Langford K; Thomas KV; Tollefsen KE
    Aquat Toxicol; 2019 May; 210():117-128. PubMed ID: 30849631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-Dimensional Algal Collection and Assembly by Combining AC-Dielectrophoresis with Fluorescence Detection for Contaminant-Induced Oxidative Stress Sensing.
    Siebman C; Velev OD; Slaveykova VI
    Biosensors (Basel); 2015 Jun; 5(2):319-36. PubMed ID: 26083806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive Oxygen Species and low-dose effects of tritium on bacterial cells.
    Rozhko TV; Nogovitsyna EI; Badun GA; Lukyanchuk AN; Kudryasheva NS
    J Environ Radioact; 2019 Nov; 208-209():106035. PubMed ID: 31499317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-invasive continuous monitoring of pro-oxidant effects of engineered nanoparticles on aquatic microorganisms.
    Santschi C; Von Moos N; Koman VB; Slaveykova VI; Bowen P; Martin OJ
    J Nanobiotechnology; 2017 Mar; 15(1):19. PubMed ID: 28270155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antagonistic and synergistic effects of light irradiation on the effects of copper on Chlamydomonas reinhardtii.
    Cheloni G; Cosio C; Slaveykova VI
    Aquat Toxicol; 2014 Oct; 155():275-82. PubMed ID: 25072593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii.
    Melegari SP; Perreault F; Costa RH; Popovic R; Matias WG
    Aquat Toxicol; 2013 Oct; 142-143():431-40. PubMed ID: 24113166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of reactive oxygen species in chlamydomonas reinhardtii in response to contrasting trace metal exposures.
    Stoiber TL; Shafer MM; Armstrong DE
    Environ Toxicol; 2013 Sep; 28(9):516-23. PubMed ID: 21786384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii.
    Perreault F; Oukarroum A; Melegari SP; Matias WG; Popovic R
    Chemosphere; 2012 Jun; 87(11):1388-94. PubMed ID: 22445953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of glutathione endpoints for measuring copper stress in Chlamydomonas reinhardtii.
    Stoiber TL; Shafer MM; Karner Perkins DA; Hemming JD; Armstrong DE
    Environ Toxicol Chem; 2007 Aug; 26(8):1563-71. PubMed ID: 17702327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional and cellular responses of the green alga Chlamydomonas reinhardtii to perfluoroalkyl phosphonic acids.
    Sanchez D; Houde M; Douville M; De Silva AO; Spencer C; Verreault J
    Aquat Toxicol; 2015 Mar; 160():31-8. PubMed ID: 25621396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the toxic effects of Cu and Cd on Chlamydomonas reinhardtii with a DEBtox model.
    Xie M; Sun Y; Feng J; Gao Y; Zhu L
    Aquat Toxicol; 2019 May; 210():106-116. PubMed ID: 30844631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alleviation of copper-induced oxidative damage in Chlamydomonas reinhardtii by carbon monoxide.
    Zheng Q; Meng Q; Wei YY; Yang ZM
    Arch Environ Contam Toxicol; 2011 Aug; 61(2):220-7. PubMed ID: 20859622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CrGNAT gene regulates excess copper accumulation and tolerance in Chlamydomonas reinhardtii.
    Wang Y; Cheng ZZ; Chen X; Zheng Q; Yang ZM
    Plant Sci; 2015 Nov; 240():120-9. PubMed ID: 26475193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diclofenac and atrazine restrict the growth of a synchronous Chlamydomonas reinhardtii population via various mechanisms.
    Harshkova D; Majewska M; Pokora W; Baścik-Remisiewicz A; Tułodziecki S; Aksmann A
    Aquat Toxicol; 2021 Jan; 230():105698. PubMed ID: 33307391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships between surface-bound and internalized copper and cadmium and toxicity in Chlamydomonas reinhardtii.
    Stoiber TL; Shafer MM; Armstrong DE
    Environ Toxicol Chem; 2012 Feb; 31(2):324-35. PubMed ID: 22045579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.