These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 20607827)
1. Expression and functional role of negative signalling regulators in tumour development and progression. Murphy T; Hori S; Sewell J; Gnanapragasam VJ Int J Cancer; 2010 Dec; 127(11):2491-9. PubMed ID: 20607827 [TBL] [Abstract][Full Text] [Related]
2. The Sprouty/Spred family as tumor suppressors: Coming of age. Kawazoe T; Taniguchi K Cancer Sci; 2019 May; 110(5):1525-1535. PubMed ID: 30874331 [TBL] [Abstract][Full Text] [Related]
3. Spred is a Sprouty-related suppressor of Ras signalling. Wakioka T; Sasaki A; Kato R; Shouda T; Matsumoto A; Miyoshi K; Tsuneoka M; Komiya S; Baron R; Yoshimura A Nature; 2001 Aug; 412(6847):647-51. PubMed ID: 11493923 [TBL] [Abstract][Full Text] [Related]
4. The developing story of Sprouty and cancer. Masoumi-Moghaddam S; Amini A; Morris DL Cancer Metastasis Rev; 2014 Sep; 33(2-3):695-720. PubMed ID: 24744103 [TBL] [Abstract][Full Text] [Related]
5. Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Sasaki A; Taketomi T; Kato R; Saeki K; Nonami A; Sasaki M; Kuriyama M; Saito N; Shibuya M; Yoshimura A Nat Cell Biol; 2003 May; 5(5):427-32. PubMed ID: 12717443 [TBL] [Abstract][Full Text] [Related]
6. Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Pouysségur J; Volmat V; Lenormand P Biochem Pharmacol; 2002 Sep; 64(5-6):755-63. PubMed ID: 12213567 [TBL] [Abstract][Full Text] [Related]
7. Distinct requirements for the Sprouty domain for functional activity of Spred proteins. King JA; Straffon AF; D'Abaco GM; Poon CL; I ST; Smith CM; Buchert M; Corcoran NM; Hall NE; Callus BA; Sarcevic B; Martin D; Lock P; Hovens CM Biochem J; 2005 Jun; 388(Pt 2):445-54. PubMed ID: 15683364 [TBL] [Abstract][Full Text] [Related]
8. Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. McCubrey JA; Steelman LS; Abrams SL; Lee JT; Chang F; Bertrand FE; Navolanic PM; Terrian DM; Franklin RA; D'Assoro AB; Salisbury JL; Mazzarino MC; Stivala F; Libra M Adv Enzyme Regul; 2006; 46():249-79. PubMed ID: 16854453 [TBL] [Abstract][Full Text] [Related]
9. Involvement of mixed lineage kinase 3 in cancer. Chadee DN Can J Physiol Pharmacol; 2013 Apr; 91(4):268-74. PubMed ID: 23627838 [TBL] [Abstract][Full Text] [Related]
10. Protein phosphatases in MAPK signalling: we keep learning from yeast. Martín H; Flández M; Nombela C; Molina M Mol Microbiol; 2005 Oct; 58(1):6-16. PubMed ID: 16164545 [TBL] [Abstract][Full Text] [Related]
11. Sprouty gain of function disrupts lens cellular processes and growth by restricting RTK signaling. Shin EH; Zhao G; Wang Q; Lovicu FJ Dev Biol; 2015 Oct; 406(2):129-46. PubMed ID: 26375880 [TBL] [Abstract][Full Text] [Related]
13. The Ras/MAPK pathway and hepatocarcinoma: pathogenesis and therapeutic implications. Delire B; Stärkel P Eur J Clin Invest; 2015 Jun; 45(6):609-23. PubMed ID: 25832714 [TBL] [Abstract][Full Text] [Related]
14. Extracellular-signal-regulated kinase/mitogen-activated protein kinase signaling as a target for cancer therapy: an updated review. Najafi M; Ahmadi A; Mortezaee K Cell Biol Int; 2019 Nov; 43(11):1206-1222. PubMed ID: 31136035 [TBL] [Abstract][Full Text] [Related]
15. MAPK phosphatases as novel targets for rheumatoid arthritis. Ralph JA; Morand EF Expert Opin Ther Targets; 2008 Jul; 12(7):795-808. PubMed ID: 18554149 [TBL] [Abstract][Full Text] [Related]
16. PKCalpha-mediated ERK, JNK and p38 activation regulates the myogenic program in human rhabdomyosarcoma cells. Mauro A; Ciccarelli C; De Cesaris P; Scoglio A; Bouché M; Molinaro M; Aquino A; Zani BM J Cell Sci; 2002 Sep; 115(Pt 18):3587-99. PubMed ID: 12186945 [TBL] [Abstract][Full Text] [Related]
17. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Hatzivassiliou G; Song K; Yen I; Brandhuber BJ; Anderson DJ; Alvarado R; Ludlam MJ; Stokoe D; Gloor SL; Vigers G; Morales T; Aliagas I; Liu B; Sideris S; Hoeflich KP; Jaiswal BS; Seshagiri S; Koeppen H; Belvin M; Friedman LS; Malek S Nature; 2010 Mar; 464(7287):431-5. PubMed ID: 20130576 [TBL] [Abstract][Full Text] [Related]
18. Up-regulation of MKK4, MKK6 and MKK7 during prostate cancer progression: an important role for SAPK signalling in prostatic neoplasia. Lotan TL; Lyon M; Huo D; Taxy JB; Brendler C; Foster BA; Stadler W; Rinker-Schaeffer CW J Pathol; 2007 Aug; 212(4):386-94. PubMed ID: 17577251 [TBL] [Abstract][Full Text] [Related]
19. SOCS-3 antagonises the proliferative and migratory effects of fibroblast growth factor-2 in prostate cancer by inhibition of p44/p42 MAPK signalling. Puhr M; Santer FR; Neuwirt H; Marcias G; Hobisch A; Culig Z Endocr Relat Cancer; 2010 Jun; 17(2):525-38. PubMed ID: 20335309 [TBL] [Abstract][Full Text] [Related]
20. Galloyl benzamide-based compounds modulating tumour necrosis factor α-stimulated c-Jun N-terminal kinase and p38 mitogen-activated protein kinase signalling pathways. Leo V; Stefanachi A; Nacci C; Leonetti F; de Candia M; Carotti A; Altomare CD; Montagnani M; Cellamare S J Pharm Pharmacol; 2015 Oct; 67(10):1380-92. PubMed ID: 26078032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]