BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 20607861)

  • 21. Substrate Stiffness Mediates Formation of Novel Cytoskeletal Structures in Fibroblasts during Cell-Microspheres Interaction.
    Adamczyk O; Baster Z; Szczypior M; Rajfur Z
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33478069
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonlinear displacement of ventral stress fibers under externally applied lateral force by an atomic force microscope.
    Hakari T; Sekiguchi H; Osada T; Kishimoto K; Afrin R; Ikai A
    Cytoskeleton (Hoboken); 2011 Nov; 68(11):628-38. PubMed ID: 21976314
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resiliency of the plasma membrane and actin cortex to large-scale deformation.
    Haase K; Pelling AE
    Cytoskeleton (Hoboken); 2013 Sep; 70(9):494-514. PubMed ID: 23929821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidized-LDL induce morphological changes and increase stiffness of endothelial cells.
    Chouinard JA; Grenier G; Khalil A; Vermette P
    Exp Cell Res; 2008 Oct; 314(16):3007-16. PubMed ID: 18692495
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reversible stress softening of actin networks.
    Chaudhuri O; Parekh SH; Fletcher DA
    Nature; 2007 Jan; 445(7125):295-8. PubMed ID: 17230186
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Decreased mechanical stiffness in LMNA-/- cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies.
    Broers JL; Peeters EA; Kuijpers HJ; Endert J; Bouten CV; Oomens CW; Baaijens FP; Ramaekers FC
    Hum Mol Genet; 2004 Nov; 13(21):2567-80. PubMed ID: 15367494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigating the cytoskeleton of chicken cardiocytes with the atomic force microscope.
    Hofmann UG; Rotsch C; Parak WJ; Radmacher M
    J Struct Biol; 1997 Jul; 119(2):84-91. PubMed ID: 9245747
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence.
    Guck J; Schinkinger S; Lincoln B; Wottawah F; Ebert S; Romeyke M; Lenz D; Erickson HM; Ananthakrishnan R; Mitchell D; Käs J; Ulvick S; Bilby C
    Biophys J; 2005 May; 88(5):3689-98. PubMed ID: 15722433
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytoskeletal re-arrangement in TGF-β1-induced alveolar epithelial-mesenchymal transition studied by atomic force microscopy and high-content analysis.
    Buckley ST; Medina C; Davies AM; Ehrhardt C
    Nanomedicine; 2012 Apr; 8(3):355-64. PubMed ID: 21756862
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct observations of the mechanical behaviors of the cytoskeleton in living fibroblasts.
    Heidemann SR; Kaech S; Buxbaum RE; Matus A
    J Cell Biol; 1999 Apr; 145(1):109-22. PubMed ID: 10189372
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new image correction method for live cell atomic force microscopy.
    Shen Y; Sun JL; Zhang A; Hu J; Xu LX
    Phys Med Biol; 2007 Apr; 52(8):2185-96. PubMed ID: 17404463
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell contraction caused by microtubule disruption is accompanied by shape changes and an increased elasticity measured by scanning acoustic microscopy.
    Karl I; Bereiter-Hahn J
    Cell Biochem Biophys; 1998; 29(3):225-41. PubMed ID: 9868580
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Mechanotransduction and tensegrity (I)].
    Mustaţă T; Rusu V
    Rev Med Chir Soc Med Nat Iasi; 1998; 102(3-4):25-35. PubMed ID: 10756840
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A cellular tensegrity model to analyse the structural viscoelasticity of the cytoskeleton.
    Cañadas P; Laurent VM; Oddou C; Isabey D; Wendling S
    J Theor Biol; 2002 Sep; 218(2):155-73. PubMed ID: 12381289
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Divided medium-based model for analyzing the dynamic reorganization of the cytoskeleton during cell deformation.
    Milan JL; Wendling-Mansuy S; Jean M; Chabrand P
    Biomech Model Mechanobiol; 2007 Nov; 6(6):373-90. PubMed ID: 17063370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Slow stress propagation in adherent cells.
    Rosenbluth MJ; Crow A; Shaevitz JW; Fletcher DA
    Biophys J; 2008 Dec; 95(12):6052-9. PubMed ID: 18805929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular dynamics and forces of a motile cell simultaneously visualized by TIRF and force microscopies.
    Iwadate Y; Yumura S
    Biotechniques; 2008 May; 44(6):739-50. PubMed ID: 18476827
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superficial and deep changes of cellular mechanical properties following cytoskeleton disassembly.
    Kasas S; Wang X; Hirling H; Marsault R; Huni B; Yersin A; Regazzi R; Grenningloh G; Riederer B; Forrò L; Dietler G; Catsicas S
    Cell Motil Cytoskeleton; 2005 Oct; 62(2):124-32. PubMed ID: 16145686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigating native coronary artery endothelium in situ and in cell culture by scanning force microscopy.
    Reichlin T; Wild A; Dürrenberger M; Daniels AU; Aebi U; Hunziker PR; Stolz M
    J Struct Biol; 2005 Oct; 152(1):52-63. PubMed ID: 16169249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Punch-wounded, fibroblast populated collagen matrices: a novel approach for studying cytoskeletal changes in three dimensions by confocal laser scanning microscopy.
    Baschong W; Sütterlin R; Aebi U
    Eur J Cell Biol; 1997 Mar; 72(3):189-201. PubMed ID: 9084981
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.