These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 20607883)

  • 41. Molecular-based synthetic approach to new group IV materials for high-efficiency, low-cost solar cells and Si-based optoelectronics.
    Fang YY; Xie J; Tolle J; Roucka R; D'Costa VR; Chizmeshya AV; Menendez J; Kouvetakis J
    J Am Chem Soc; 2008 Nov; 130(47):16095-102. PubMed ID: 19032100
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A 25.1% Efficient Stand-Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator.
    Chinello E; Modestino MA; Coulot L; Ackermann M; Gerlich F; Psaltis D; Moser C
    Glob Chall; 2017 Dec; 1(9):1700095. PubMed ID: 31565298
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optics of two-stage photovoltaic concentrators with dielectric second stages.
    Ning X; O'Gallagher J; Winston R
    Appl Opt; 1987 Apr; 26(7):1207-12. PubMed ID: 20454302
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High performance Fresnel-based photovoltaic concentrator.
    Benítez P; Miñano JC; Zamora P; Mohedano R; Cvetkovic A; Buljan M; Chaves J; Hernández M
    Opt Express; 2010 Apr; 18 Suppl 1():A25-40. PubMed ID: 20588570
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High performance Fresnel-based photovoltaic concentrator.
    Benítez P; Miñano JC; Zamora P; Mohedano R; Cvetkovic A; Buljan M; Chaves J; Hernández M
    Opt Express; 2010 Apr; 18(9):A25-40. PubMed ID: 20607884
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A tapered dielectric waveguide solar concentrator for a compound semiconductor photovoltaic cell.
    Park M; Oh K; Kim J; Shin HW; Oh BD
    Opt Express; 2010 Jan; 18(2):1777-87. PubMed ID: 20174005
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Experimental study on the electrical performance of a solar photovoltaic panel by water immersion.
    Sivakumar B; Navakrishnan S; Cibi MR; Senthil R
    Environ Sci Pollut Res Int; 2021 Aug; 28(31):42981-42989. PubMed ID: 34218373
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reflection-type single long-pulse solar simulator for high-efficiency crystalline silicon photovoltaic modules.
    Hu B; Li B; Zhao R; Yang T
    Rev Sci Instrum; 2011 Jun; 82(6):065104. PubMed ID: 21721727
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design construction and analysis of solar ridge concentrator photovoltaic (PV) system to improve battery charging performance.
    Narasimman K; Selvarasan I
    Ecotoxicol Environ Saf; 2016 May; 127():187-92. PubMed ID: 26852396
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Certified high-efficiency "large-area" perovskite solar module for Fresnel lens-based concentrated photovoltaics.
    Roy A; Ding B; Khalid M; Alzahrani M; Ding Y; Tahir AA; Sundaram S; Kinge S; Asiri AM; Slonopas A; Dyson PJ; Nazeeruddin MK; Mallick TK
    iScience; 2023 Mar; 26(3):106079. PubMed ID: 36843846
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-efficiency organic solar concentrators for photovoltaics.
    Currie MJ; Mapel JK; Heidel TD; Goffri S; Baldo MA
    Science; 2008 Jul; 321(5886):226-8. PubMed ID: 18621664
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting.
    Tsuei CH; Sun WS; Kuo CC
    Opt Express; 2010 Nov; 18 Suppl 4():A640-53. PubMed ID: 21165097
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermal-Optical Evaluation of an Optimized Trough Solar Concentrator for an Advanced Solar-Tracking Application Using Shape Memory Alloy.
    Hariri NG; Nayel KM; Alyoubi EK; Almadani IK; Osman IS; Al-Qahtani BA
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295178
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Coaxial silicon nanowires as solar cells and nanoelectronic power sources.
    Tian B; Zheng X; Kempa TJ; Fang Y; Yu N; Yu G; Huang J; Lieber CM
    Nature; 2007 Oct; 449(7164):885-9. PubMed ID: 17943126
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Solar irradiation on the rear surface of bifacial solar modules: a modeling approach.
    Durusoy B; Ozden T; Akinoglu BG
    Sci Rep; 2020 Aug; 10(1):13300. PubMed ID: 32764654
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of Fresnel lenses and parabolic mirrors as solar energy concentrators.
    Lorenzo E; Luque A
    Appl Opt; 1982 May; 21(10):1851-3. PubMed ID: 20389950
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Energy collection efficiency of holographic planar solar concentrators.
    Castro JM; Zhang D; Myer B; Kostuk RK
    Appl Opt; 2010 Feb; 49(5):858-70. PubMed ID: 20154753
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular bulk heterojunctions: an emerging approach to organic solar cells.
    Roncali J
    Acc Chem Res; 2009 Nov; 42(11):1719-30. PubMed ID: 19580313
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-performance laterally-arranged multiple-bandgap solar cells using spatially composition-graded CdxPb1-xS nanowires on a single substrate: a design study.
    Caselli DA; Ning CZ
    Opt Express; 2011 Jul; 19 Suppl 4():A686-94. PubMed ID: 21747535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.