These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 20608669)

  • 1. Snap-top nanocarriers.
    Ambrogio MW; Pecorelli TA; Patel K; Khashab NM; Trabolsi A; Khatib HA; Botros YY; Zink JI; Stoddart JF
    Org Lett; 2010 Aug; 12(15):3304-7. PubMed ID: 20608669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanized silica nanoparticles based on reversible bistable [2]pseudorotaxanes as supramolecular nanovalves for multistage pH-controlled release.
    Wang M; Chen T; Ding C; Fu J
    Chem Commun (Camb); 2014 May; 50(39):5068-71. PubMed ID: 24714998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cucurbit[7]uril pseudorotaxane-based photoresponsive supramolecular nanovalve.
    Sun YL; Yang BJ; Zhang SX; Yang YW
    Chemistry; 2012 Jul; 18(30):9212-6. PubMed ID: 22718563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme-inspired controlled release of cucurbit[7]uril nanovalves by using magnetic mesoporous silica.
    Liu J; Du X; Zhang X
    Chemistry; 2011 Jan; 17(3):810-5. PubMed ID: 21226095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-responsive mechanised nanoparticles gated by semirotaxanes.
    Khashab NM; Belowich ME; Trabolsi A; Friedman DC; Valente C; Lau Y; Khatib HA; Zink JI; Stoddart JF
    Chem Commun (Camb); 2009 Sep; (36):5371-3. PubMed ID: 19724788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanovalve-controlled cargo release activated by plasmonic heating.
    Croissant J; Zink JI
    J Am Chem Soc; 2012 May; 134(18):7628-31. PubMed ID: 22540671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capping Silica Nanoparticles with Tryptophan-Mediated Cucurbit[8]uril Complex for Targeted Intracellular Drug Delivery Triggered by Tumor-Overexpressed IDO1 Enzyme.
    Qiao H; Jia J; Shen H; Zhao S; Chen E; Chen W; Di B; Hu C
    Adv Healthc Mater; 2019 Jul; 8(13):e1900174. PubMed ID: 30990966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme-responsive supramolecular nanovalves crafted by mesoporous silica nanoparticles and choline-sulfonatocalix[4]arene [2]pseudorotaxanes for controlled cargo release.
    Sun YL; Zhou Y; Li QL; Yang YW
    Chem Commun (Camb); 2013 Oct; 49(79):9033-5. PubMed ID: 23982479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled-access hollow mechanized silica nanocontainers.
    Du L; Liao S; Khatib HA; Stoddart JF; Zink JI
    J Am Chem Soc; 2009 Oct; 131(42):15136-42. PubMed ID: 19799420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible 2D pseudopolyrotaxanes based on cyclodextrins and cucurbit[6]uril.
    Liu Y; Ke CF; Zhang HY; Wu WJ; Shi J
    J Org Chem; 2007 Jan; 72(1):280-3. PubMed ID: 17194112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multilayer films with nanocontainers: redox-controlled reversible encapsulation of guest molecules.
    Zhang J; Liu Y; Yuan B; Wang Z; Schönhoff M; Zhang X
    Chemistry; 2012 Nov; 18(47):14968-73. PubMed ID: 23112102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An intelligent anticorrosion coating based on pH-responsive supramolecular nanocontainers.
    Chen T; Fu J
    Nanotechnology; 2012 Dec; 23(50):505705. PubMed ID: 23165151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NO
    Alberto Juárez L; Costero AM; Parra M; Gaviña P; Gil S; Martínez-Máñez R; Sancenón F
    Chem Commun (Camb); 2017 Jan; 53(3):585-588. PubMed ID: 27981334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-operated nanopistons on the surfaces of mesoporous silica nanoparticles.
    Zhao YL; Li Z; Kabehie S; Botros YY; Stoddart JF; Zink JI
    J Am Chem Soc; 2010 Sep; 132(37):13016-25. PubMed ID: 20799689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A heterowheel [3]pseudorotaxane by integrating β-cyclodextrin and cucurbit[8]uril inclusion complexes.
    Ding ZJ; Zhang HY; Wang LH; Ding F; Liu Y
    Org Lett; 2011 Mar; 13(5):856-9. PubMed ID: 21268596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH clock-operated mechanized nanoparticles.
    Angelos S; Khashab NM; Yang YW; Trabolsi A; Khatib HA; Stoddart JF; Zink JI
    J Am Chem Soc; 2009 Sep; 131(36):12912-4. PubMed ID: 19705840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hindered disulfide bonds to regulate release rate of model drug from mesoporous silica.
    Nadrah P; Maver U; Jemec A; Tišler T; Bele M; Dražić G; Benčina M; Pintar A; Planinšek O; Gaberšček M
    ACS Appl Mater Interfaces; 2013 May; 5(9):3908-15. PubMed ID: 23581883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-operated mechanized nanoparticles.
    Ferris DP; Zhao YL; Khashab NM; Khatib HA; Stoddart JF; Zink JI
    J Am Chem Soc; 2009 Feb; 131(5):1686-8. PubMed ID: 19159224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cucurbit[8]uril-mediated supramolecular photoswitching for self-preservation of mesoporous silica nanoparticle delivery system.
    Ma N; Wang WJ; Chen S; Wang XS; Wang XQ; Wang SB; Zhu JY; Cheng SX; Zhang XZ
    Chem Commun (Camb); 2015 Aug; 51(65):12970-3. PubMed ID: 26176026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-Responsive Mechanized Mesoporous Silica Nanoparticles Based on Sulfonatocalixarene Supramolecular Switches.
    Zhou T; Song N; Xu SH; Dong B; Yang YW
    Chemphyschem; 2016 Jun; 17(12):1840-5. PubMed ID: 26507946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.