These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 20608730)
1. Key role of Fe(2+) in epithiospecifier protein activity. Williams DJ; Critchley C; Pun S; Chaliha M; O'Hare TJ J Agric Food Chem; 2010 Aug; 58(15):8512-21. PubMed ID: 20608730 [TBL] [Abstract][Full Text] [Related]
2. Epithiospecifier protein activity in broccoli: the link between terminal alkenyl glucosinolates and sulphoraphane nitrile. Williams DJ; Critchley C; Pun S; Nottingham S; O'Hare TJ Phytochemistry; 2008 Nov; 69(16):2765-73. PubMed ID: 18977005 [TBL] [Abstract][Full Text] [Related]
3. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds. Williams DJ; Critchley C; Pun S; Chaliha M; O'Hare TJ Phytochemistry; 2009; 70(11-12):1401-9. PubMed ID: 19747700 [TBL] [Abstract][Full Text] [Related]
4. Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates. Burow M; Markert J; Gershenzon J; Wittstock U FEBS J; 2006 Jun; 273(11):2432-46. PubMed ID: 16704417 [TBL] [Abstract][Full Text] [Related]
5. Characterisation of recombinant epithiospecifier protein and its over-expression in Arabidopsis thaliana. Zabala Mde T; Grant M; Bones AM; Bennett R; Lim YS; Kissen R; Rossiter JT Phytochemistry; 2005 Apr; 66(8):859-67. PubMed ID: 15845404 [TBL] [Abstract][Full Text] [Related]
6. A thiocyanate-forming protein generates multiple products upon allylglucosinolate breakdown in Thlaspi arvense. Kuchernig JC; Backenköhler A; Lübbecke M; Burow M; Wittstock U Phytochemistry; 2011 Oct; 72(14-15):1699-709. PubMed ID: 21783213 [TBL] [Abstract][Full Text] [Related]
7. Cell- and tissue-specific localization and regulation of the epithiospecifier protein in Arabidopsis thaliana. Burow M; Rice M; Hause B; Gershenzon J; Wittstock U Plant Mol Biol; 2007 May; 64(1-2):173-85. PubMed ID: 17390109 [TBL] [Abstract][Full Text] [Related]
8. The genetic basis of constitutive and herbivore-induced ESP-independent nitrile formation in Arabidopsis. Burow M; Losansky A; Müller R; Plock A; Kliebenstein DJ; Wittstock U Plant Physiol; 2009 Jan; 149(1):561-74. PubMed ID: 18987211 [TBL] [Abstract][Full Text] [Related]
9. Formation of simple nitriles upon glucosinolate hydrolysis affects direct and indirect defense against the specialist herbivore, Pieris rapae. Mumm R; Burow M; Bukovinszkine'kiss G; Kazantzidou E; Wittstock U; Dicke M; Gershenzon J J Chem Ecol; 2008 Oct; 34(10):1311-21. PubMed ID: 18787901 [TBL] [Abstract][Full Text] [Related]
10. The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Lambrix V; Reichelt M; Mitchell-Olds T; Kliebenstein DJ; Gershenzon J Plant Cell; 2001 Dec; 13(12):2793-807. PubMed ID: 11752388 [TBL] [Abstract][Full Text] [Related]
11. Characterization of recombinant nitrile-specifier proteins (NSPs) of Arabidopsis thaliana: dependency on Fe(II) ions and the effect of glucosinolate substrate and reaction conditions. Kong XY; Kissen R; Bones AM Phytochemistry; 2012 Dec; 84():7-17. PubMed ID: 22954730 [TBL] [Abstract][Full Text] [Related]
12. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Winde I; Wittstock U Phytochemistry; 2011 Sep; 72(13):1566-75. PubMed ID: 21316065 [TBL] [Abstract][Full Text] [Related]
13. Purification and characterisation of epithiospecifier protein from Brassica napus: enzymic intramolecular sulphur addition within alkenyl thiohydroximates derived from alkenyl glucosinolate hydrolysis. Foo HL; Gronning LM; Goodenough L; Bones AM; Danielsen B; Whiting DA; Rossiter JT FEBS Lett; 2000 Feb; 468(2-3):243-6. PubMed ID: 10692595 [TBL] [Abstract][Full Text] [Related]
14. Glucosinolate hydrolysis in Lepidium sativum--identification of the thiocyanate-forming protein. Burow M; Bergner A; Gershenzon J; Wittstock U Plant Mol Biol; 2007 Jan; 63(1):49-61. PubMed ID: 17139450 [TBL] [Abstract][Full Text] [Related]
15. Tipping the scales--specifier proteins in glucosinolate hydrolysis. Wittstock U; Burow M IUBMB Life; 2007 Dec; 59(12):744-51. PubMed ID: 18085474 [TBL] [Abstract][Full Text] [Related]
16. Effect of cooking brassica vegetables on the subsequent hydrolysis and metabolic fate of glucosinolates. Rungapamestry V; Duncan AJ; Fuller Z; Ratcliffe B Proc Nutr Soc; 2007 Feb; 66(1):69-81. PubMed ID: 17343774 [TBL] [Abstract][Full Text] [Related]
17. Iron is a centrally bound cofactor of specifier proteins involved in glucosinolate breakdown. Backenköhler A; Eisenschmidt D; Schneegans N; Strieker M; Brandt W; Wittstock U PLoS One; 2018; 13(11):e0205755. PubMed ID: 30395611 [TBL] [Abstract][Full Text] [Related]
18. Identification and Characterization of Three Epithiospecifier Protein Isoforms in Witzel K; Abu Risha M; Albers P; Börnke F; Hanschen FS Front Plant Sci; 2019; 10():1552. PubMed ID: 31921230 [TBL] [Abstract][Full Text] [Related]
19. Nitrile-specifier proteins involved in glucosinolate hydrolysis in Arabidopsis thaliana. Kissen R; Bones AM J Biol Chem; 2009 May; 284(18):12057-70. PubMed ID: 19224919 [TBL] [Abstract][Full Text] [Related]
20. Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea Var. capitata) cooked for different durations. Rungapamestry V; Duncan AJ; Fuller Z; Ratcliffe B J Agric Food Chem; 2006 Oct; 54(20):7628-34. PubMed ID: 17002432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]