These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 20609245)

  • 1. Blood flow shapes intravascular pillar geometry in the chick chorioallantoic membrane.
    Lee GS; Filipovic N; Miele LF; Lin M; Simpson DC; Giney B; Konerding MA; Tsuda A; Mentzer SJ
    J Angiogenes Res; 2010 Jul; 2():11. PubMed ID: 20609245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intravascular pillars and pruning in the extraembryonic vessels of chick embryos.
    Lee GS; Filipovic N; Lin M; Gibney BC; Simpson DC; Konerding MA; Tsuda A; Mentzer SJ
    Dev Dyn; 2011 Jun; 240(6):1335-43. PubMed ID: 21448976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of aneurysmogenic high positive wall shear stress gradient by wide angle at cerebral bifurcations, independent of flow rate.
    Lauric A; Hippelheuser JE; Malek AM
    J Neurosurg; 2019 Aug; 131(2):442-452. PubMed ID: 30095336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimality in the developing vascular system: branching remodeling by means of intussusception as an efficient adaptation mechanism.
    Djonov VG; Kurz H; Burri PH
    Dev Dyn; 2002 Aug; 224(4):391-402. PubMed ID: 12203731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational flow dynamics in a geometric model of intussusceptive angiogenesis.
    Filipovic N; Tsuda A; Lee GS; Miele LF; Lin M; Konerding MA; Mentzer SJ
    Microvasc Res; 2009 Dec; 78(3):286-93. PubMed ID: 19715707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of bifurcation angle and other anatomical characteristics on blood flow - A computational study of non-stented and stented coronary arteries.
    Beier S; Ormiston J; Webster M; Cater J; Norris S; Medrano-Gracia P; Young A; Cowan B
    J Biomech; 2016 Jun; 49(9):1570-1582. PubMed ID: 27062590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of triangular pillar geometry on high- frequency piezocomposite transducers.
    Yin J; Lee M; Brown J; Cherin E; Foster F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Apr; 57(4):957-68. PubMed ID: 20378458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects.
    Milner JS; Moore JA; Rutt BK; Steinman DA
    J Vasc Surg; 1998 Jul; 28(1):143-56. PubMed ID: 9685141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D reconstruction techniques of human coronary bifurcations for shear stress computations.
    Gijsen FJ; Schuurbiers JC; van de Giessen AG; Schaap M; van der Steen AF; Wentzel JJ
    J Biomech; 2014 Jan; 47(1):39-43. PubMed ID: 24215669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time intravascular shear stress in the rabbit abdominal aorta.
    Ai L; Yu H; Dai W; Hale SL; Kloner RA; Hsiai TK
    IEEE Trans Biomed Eng; 2009 Jun; 56(6):1755-64. PubMed ID: 19527952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients.
    Wells DR; Archie JP; Kleinstreuer C
    J Vasc Surg; 1996 Apr; 23(4):667-78. PubMed ID: 8627904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Healthy and diseased coronary bifurcation geometries influence near-wall and intravascular flow: A computational exploration of the hemodynamic risk.
    Chiastra C; Gallo D; Tasso P; Iannaccone F; Migliavacca F; Wentzel JJ; Morbiducci U
    J Biomech; 2017 Jun; 58():79-88. PubMed ID: 28457603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and hemodynamics of vascular networks in the chorioallantoic membrane of the chicken.
    Maibier M; Reglin B; Nitzsche B; Xiang W; Rong WW; Hoffmann B; Djonov V; Secomb TW; Pries AR
    Am J Physiol Heart Circ Physiol; 2016 Oct; 311(4):H913-H926. PubMed ID: 27402670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competing Fluid Forces Control Endothelial Sprouting in a 3-D Microfluidic Vessel Bifurcation Model.
    Akbari E; Spychalski GB; Rangharajan KK; Prakash S; Song JW
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31277456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wall shear rate distribution in an abdominal aortic bifurcation model: effects of vessel compliance and phase angle between pressure and flow waveforms.
    Lee CS; Tarbell JM
    J Biomech Eng; 1997 Aug; 119(3):333-42. PubMed ID: 9285347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicted wall shear rate gradients in T-type arteriolar bifurcations.
    Noren D; Palmer HJ; Frame MD
    Biorheology; 2000; 37(5-6):325-40. PubMed ID: 11204540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress.
    Zarins CK; Giddens DP; Bharadvaj BK; Sottiurai VS; Mabon RF; Glagov S
    Circ Res; 1983 Oct; 53(4):502-14. PubMed ID: 6627609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing pulsatile flow in a deployed coronary stent.
    Rajamohan D; Banerjee RK; Back LH; Ibrahim AA; Jog MA
    J Biomech Eng; 2006 Jun; 128(3):347-59. PubMed ID: 16706584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the preservation of vessel bifurcations during flow-mediated angiogenic remodelling.
    Edgar LT; Franco CA; Gerhardt H; Bernabeu MO
    PLoS Comput Biol; 2021 Feb; 17(2):e1007715. PubMed ID: 33539345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a shear stress sensor to analyse the influence of polymers on the turbulent wall shear stress.
    Nottebrock B; Grosse S; Schröder W
    J Phys Condens Matter; 2011 May; 23(18):184121. PubMed ID: 21508484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.