These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
402 related articles for article (PubMed ID: 20609350)
1. Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors. Qi J; Nakayama K; Cardiff RD; Borowsky AD; Kaul K; Williams R; Krajewski S; Mercola D; Carpenter PM; Bowtell D; Ronai ZA Cancer Cell; 2010 Jul; 18(1):23-38. PubMed ID: 20609350 [TBL] [Abstract][Full Text] [Related]
2. The Siah2-HIF-FoxA2 axis in prostate cancer – new markers and therapeutic opportunities. Qi J; Pellecchia M; Ronai ZA Oncotarget; 2010 Sep; 1(5):379-85. PubMed ID: 21037926 [TBL] [Abstract][Full Text] [Related]
3. The ubiquitin ligase Siah2 is revealed as an accomplice of the androgen receptor in castration resistant prostate cancer. Freeman MR Asian J Androl; 2013 Jul; 15(4):447-8. PubMed ID: 23708461 [No Abstract] [Full Text] [Related]
4. Mash1 expression is induced in neuroendocrine prostate cancer upon the loss of Foxa2. Gupta A; Yu X; Case T; Paul M; Shen MM; Kaestner KH; Matusik RJ Prostate; 2013 May; 73(6):582-9. PubMed ID: 23060003 [TBL] [Abstract][Full Text] [Related]
5. Neuroendocrine differentiation in the 12T-10 transgenic prostate mouse model mimics endocrine differentiation of pancreatic beta cells. Gupta A; Wang Y; Browne C; Kim S; Case T; Paul M; Wills ML; Matusik RJ Prostate; 2008 Jan; 68(1):50-60. PubMed ID: 18004726 [TBL] [Abstract][Full Text] [Related]
6. Genetic deletion of osteopontin in TRAMP mice skews prostate carcinogenesis from adenocarcinoma to aggressive human-like neuroendocrine cancers. Mauri G; Jachetti E; Comuzzi B; Dugo M; Arioli I; Miotti S; Sangaletti S; Di Carlo E; Tripodo C; Colombo MP Oncotarget; 2016 Jan; 7(4):3905-20. PubMed ID: 26700622 [TBL] [Abstract][Full Text] [Related]
8. Histone demethylase PHF8 drives neuroendocrine prostate cancer progression by epigenetically upregulating FOXA2. Liu Q; Pang J; Wang LA; Huang Z; Xu J; Yang X; Xie Q; Huang Y; Tang T; Tong D; Liu G; Wang L; Zhang D; Ma Q; Xiao H; Lan W; Qin J; Jiang J J Pathol; 2021 Jan; 253(1):106-118. PubMed ID: 33009820 [TBL] [Abstract][Full Text] [Related]
9. HIF1alpha isoforms in benign and malignant prostate tissue and their correlation to neuroendocrine differentiation. Monsef N; Soller M; Panagopoulos I; Abrahamsson PA BMC Cancer; 2010 Jul; 10():385. PubMed ID: 20663134 [TBL] [Abstract][Full Text] [Related]
10. Localization of immunoreactive HIF-1alpha and HIF-2alpha in neuroendocrine cells of both benign and malignant prostate glands. Monsef N; Helczynski L; Lundwall A; Påhlman S; Prostate; 2007 Aug; 67(11):1219-29. PubMed ID: 17562539 [TBL] [Abstract][Full Text] [Related]
11. SRC family kinase FYN promotes the neuroendocrine phenotype and visceral metastasis in advanced prostate cancer. Gururajan M; Cavassani KA; Sievert M; Duan P; Lichterman J; Huang JM; Smith B; You S; Nandana S; Chu GC; Mink S; Josson S; Liu C; Morello M; Jones LW; Kim J; Freeman MR; Bhowmick N; Zhau HE; Chung LW; Posadas EM Oncotarget; 2015 Dec; 6(42):44072-83. PubMed ID: 26624980 [TBL] [Abstract][Full Text] [Related]
12. Expression and role of Foxa proteins in prostate cancer. Mirosevich J; Gao N; Gupta A; Shappell SB; Jove R; Matusik RJ Prostate; 2006 Jul; 66(10):1013-28. PubMed ID: 16001449 [TBL] [Abstract][Full Text] [Related]
14. FOXA2 is a sensitive and specific marker for small cell neuroendocrine carcinoma of the prostate. Park JW; Lee JK; Witte ON; Huang J Mod Pathol; 2017 Sep; 30(9):1262-1272. PubMed ID: 28621319 [TBL] [Abstract][Full Text] [Related]
15. Neuroendocrine-like prostate cancer cells: neuroendocrine transdifferentiation of prostate adenocarcinoma cells. Yuan TC; Veeramani S; Lin MF Endocr Relat Cancer; 2007 Sep; 14(3):531-47. PubMed ID: 17914087 [TBL] [Abstract][Full Text] [Related]
16. ONECUT2 is a driver of neuroendocrine prostate cancer. Guo H; Ci X; Ahmed M; Hua JT; Soares F; Lin D; Puca L; Vosoughi A; Xue H; Li E; Su P; Chen S; Nguyen T; Liang Y; Zhang Y; Xu X; Xu J; Sheahan AV; Ba-Alawi W; Zhang S; Mahamud O; Vellanki RN; Gleave M; Bristow RG; Haibe-Kains B; Poirier JT; Rudin CM; Tsao MS; Wouters BG; Fazli L; Feng FY; Ellis L; van der Kwast T; Berlin A; Koritzinsky M; Boutros PC; Zoubeidi A; Beltran H; Wang Y; He HH Nat Commun; 2019 Jan; 10(1):278. PubMed ID: 30655535 [TBL] [Abstract][Full Text] [Related]
17. MCTP1 increases the malignancy of androgen-deprived prostate cancer cells by inducing neuroendocrine differentiation and EMT. Liu YN; Chen WY; Yeh HL; Chen WH; Jiang KC; Li HR; Dung PVT; Chen ZQ; Lee WJ; Hsiao M; Huang J; Wen YC Sci Signal; 2024 Jun; 17(840):eadc9142. PubMed ID: 38861615 [TBL] [Abstract][Full Text] [Related]
18. Tissue injury and hypoxia promote malignant progression of prostate cancer by inducing CXCL13 expression in tumor myofibroblasts. Ammirante M; Shalapour S; Kang Y; Jamieson CA; Karin M Proc Natl Acad Sci U S A; 2014 Oct; 111(41):14776-81. PubMed ID: 25267627 [TBL] [Abstract][Full Text] [Related]
19. RNA interference of achaete-scute homolog 1 in mouse prostate neuroendocrine cells reveals its gene targets and DNA binding sites. Hu Y; Wang T; Stormo GD; Gordon JI Proc Natl Acad Sci U S A; 2004 Apr; 101(15):5559-64. PubMed ID: 15060276 [TBL] [Abstract][Full Text] [Related]