BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 20609381)

  • 1. Motor learning after stroke: is skill acquisition a prerequisite for contralesional neuroplastic change?
    Boyd LA; Vidoni ED; Wessel BD
    Neurosci Lett; 2010 Sep; 482(1):21-5. PubMed ID: 20609381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor network changes associated with successful motor skill relearning after acute ischemic stroke: a longitudinal functional magnetic resonance imaging study.
    Askim T; Indredavik B; Vangberg T; Håberg A
    Neurorehabil Neural Repair; 2009; 23(3):295-304. PubMed ID: 18984831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Single Bout of High-Intensity Interval Training Improves Motor Skill Retention in Individuals With Stroke.
    Nepveu JF; Thiel A; Tang A; Fung J; Lundbye-Jensen J; Boyd LA; Roig M
    Neurorehabil Neural Repair; 2017 Aug; 31(8):726-735. PubMed ID: 28691645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sleep enhances off-line spatial and temporal motor learning after stroke.
    Siengsukon C; Boyd LA
    Neurorehabil Neural Repair; 2009 May; 23(4):327-35. PubMed ID: 19171948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BDNF Val66Met polymorphism is associated with abnormal interhemispheric transfer of a newly acquired motor skill.
    Morin-Moncet O; Beaumont V; de Beaumont L; Lepage JF; Théoret H
    J Neurophysiol; 2014 May; 111(10):2094-102. PubMed ID: 24572097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of slow repetitive TMS of the motor cortex on ipsilateral sequential simple finger movements and motor skill learning.
    Kobayashi M
    Restor Neurol Neurosci; 2010; 28(4):437-48. PubMed ID: 20714068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke.
    Kim YH; You SH; Ko MH; Park JW; Lee KH; Jang SH; Yoo WK; Hallett M
    Stroke; 2006 Jun; 37(6):1471-6. PubMed ID: 16675743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prolonged motor skill learning--a combined behavioural training and θ burst TMS study.
    Platz T; Roschka S; Doppl K; Roth C; Lotze M; Sack AT; Rothwell JC
    Restor Neurol Neurosci; 2012; 30(3):213-24. PubMed ID: 22406488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implicit sequence-specific motor learning after subcortical stroke is associated with increased prefrontal brain activations: an fMRI study.
    Meehan SK; Randhawa B; Wessel B; Boyd LA
    Hum Brain Mapp; 2011 Feb; 32(2):290-303. PubMed ID: 20725908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mental practice with motor imagery: evidence for motor recovery and cortical reorganization after stroke.
    Butler AJ; Page SJ
    Arch Phys Med Rehabil; 2006 Dec; 87(12 Suppl 2):S2-11. PubMed ID: 17140874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning.
    Plautz EJ; Milliken GW; Nudo RJ
    Neurobiol Learn Mem; 2000 Jul; 74(1):27-55. PubMed ID: 10873519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural correlates of proprioceptive integration in the contralesional hemisphere of very impaired patients shortly after a subcortical stroke: an FMRI study.
    Dechaumont-Palacin S; Marque P; De Boissezon X; Castel-Lacanal E; Carel C; Berry I; Pastor J; Albucher JF; Chollet F; Loubinoux I
    Neurorehabil Neural Repair; 2008; 22(2):154-65. PubMed ID: 17916656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional MRI evidence for adult motor cortex plasticity during motor skill learning.
    Karni A; Meyer G; Jezzard P; Adams MM; Turner R; Ungerleider LG
    Nature; 1995 Sep; 377(6545):155-8. PubMed ID: 7675082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial.
    Luft AR; McCombe-Waller S; Whitall J; Forrester LW; Macko R; Sorkin JD; Schulz JB; Goldberg AP; Hanley DF
    JAMA; 2004 Oct; 292(15):1853-61. PubMed ID: 15494583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural plasticity and bilateral movements: A rehabilitation approach for chronic stroke.
    Cauraugh JH; Summers JJ
    Prog Neurobiol; 2005 Apr; 75(5):309-20. PubMed ID: 15885874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compensatory motor network connectivity is associated with motor sequence learning after subcortical stroke.
    Wadden KP; Woodward TS; Metzak PD; Lavigne KM; Lakhani B; Auriat AM; Boyd LA
    Behav Brain Res; 2015 Jun; 286():136-45. PubMed ID: 25757996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke.
    Nowak DA; Grefkes C; Dafotakis M; Eickhoff S; Küst J; Karbe H; Fink GR
    Arch Neurol; 2008 Jun; 65(6):741-7. PubMed ID: 18541794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor Lateralization Provides a Foundation for Predicting and Treating Non-paretic Arm Motor Deficits in Stroke.
    Sainburg RL; Maenza C; Winstein C; Good D
    Adv Exp Med Biol; 2016; 957():257-272. PubMed ID: 28035570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deconstructing skill learning and its physiological mechanisms.
    Spampinato D; Celnik P
    Cortex; 2018 Jul; 104():90-102. PubMed ID: 29775838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long lasting structural changes in primary motor cortex after motor skill learning: a behavioural and stereological study.
    Morales P
    Biol Res; 2008; 41(4):397-404. PubMed ID: 19621120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.