BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 20609906)

  • 21. Inhibition of carbamyl phosphate synthetase-I and glutamine synthetase by hepatotoxic doses of acetaminophen in mice.
    Gupta S; Rogers LK; Taylor SK; Smith CV
    Toxicol Appl Pharmacol; 1997 Oct; 146(2):317-27. PubMed ID: 9344900
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proteomic analysis of redox-dependent changes using cysteine-labeling 2D DIGE.
    Chan HL; Sinclair J; Timms JF
    Methods Mol Biol; 2012; 854():113-28. PubMed ID: 22311756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redox proteomics of thiol proteins in mouse heart during ischemia/reperfusion using ICAT reagents and mass spectrometry.
    Kumar V; Kleffmann T; Hampton MB; Cannell MB; Winterbourn CC
    Free Radic Biol Med; 2013 May; 58():109-17. PubMed ID: 23376233
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing Oligomerization Status of Mitochondrial OXPHOS Complexes Via Blue Native Page.
    Woytash J; Inigo JR; Chandra D
    Methods Mol Biol; 2022; 2413():55-62. PubMed ID: 35044654
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches.
    Nietzel T; Mostertz J; Hochgräfe F; Schwarzländer M
    Mitochondrion; 2017 Mar; 33():72-83. PubMed ID: 27456428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A sensitive method for the quantitative measurement of protein thiol modification in response to oxidative stress.
    Landar A; Oh JY; Giles NM; Isom A; Kirk M; Barnes S; Darley-Usmar VM
    Free Radic Biol Med; 2006 Feb; 40(3):459-68. PubMed ID: 16443161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Blue-Native Electrophoresis to Study the OXPHOS Complexes.
    Fernandez-Vizarra E; Zeviani M
    Methods Mol Biol; 2021; 2192():287-311. PubMed ID: 33230780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of Mitochondrial Respiratory Chain Complexes in Cultured Human Cells using Blue Native Polyacrylamide Gel Electrophoresis and Immunoblotting.
    Konovalova S
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30829336
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE.
    Beer SM; Taylor ER; Brown SE; Dahm CC; Costa NJ; Runswick MJ; Murphy MP
    J Biol Chem; 2004 Nov; 279(46):47939-51. PubMed ID: 15347644
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thiol-Redox Proteomics to Study Reversible Protein Thiol Oxidations in Bacteria.
    Rossius M; Hochgräfe F; Antelmann H
    Methods Mol Biol; 2018; 1841():261-275. PubMed ID: 30259492
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mass Spectrometry of Mitochondrial Membrane Protein Complexes.
    Negroni L; Zivy M; Lemaire C
    Methods Mol Biol; 2017; 1635():233-246. PubMed ID: 28755372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage.
    Requejo R; Hurd TR; Costa NJ; Murphy MP
    FEBS J; 2010 Mar; 277(6):1465-80. PubMed ID: 20148960
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Application of "blue native" electrophoresis in the studies of mitochondrial respiratory chain complexes in physiology and pathology].
    Lebiedzińska M; Duszyński J; Wieckowski MR
    Postepy Biochem; 2008; 54(2):217-23. PubMed ID: 18807933
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of oxidant sensitive thiol proteins by fluorescence labeling and two-dimensional electrophoresis.
    Baty JW; Hampton MB; Winterbourn CC
    Proteomics; 2002 Sep; 2(9):1261-6. PubMed ID: 12362344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pathways affected by 3,5-diiodo-l-thyronine in liver of high fat-fed rats: evidence from two-dimensional electrophoresis, blue-native PAGE, and mass spectrometry.
    Silvestri E; Cioffi F; Glinni D; Ceccarelli M; Lombardi A; de Lange P; Chambery A; Severino V; Lanni A; Goglia F; Moreno M
    Mol Biosyst; 2010 Nov; 6(11):2256-71. PubMed ID: 20844788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gel-based methods in redox proteomics.
    Charles R; Jayawardhana T; Eaton P
    Biochim Biophys Acta; 2014 Feb; 1840(2):830-7. PubMed ID: 23624333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescence thiol modification assay: oxidatively modified proteins in Bacillus subtilis.
    Hochgräfe F; Mostertz J; Albrecht D; Hecker M
    Mol Microbiol; 2005 Oct; 58(2):409-25. PubMed ID: 16194229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Limiting the Hydrolysis and Oxidation of Maleimide-Peptide Adducts Improves Detection of Protein Thiol Oxidation.
    Boyatzis AE; Bringans SD; Piggott MJ; Duong MN; Lipscombe RJ; Arthur PG
    J Proteome Res; 2017 May; 16(5):2004-2015. PubMed ID: 28349699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mass spectrometric identification of mitochondrial oxidative phosphorylation subunits separated by two-dimensional blue-native polyacrylamide gel electrophoresis.
    Devreese B; Vanrobaeys F; Smet J; Van Beeumen J; Van Coster R
    Electrophoresis; 2002 Aug; 23(15):2525-33. PubMed ID: 12210211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-dimensional blue native/blue native polyacrylamide gel electrophoresis for the characterization of mitochondrial protein complexes and supercomplexes.
    Sunderhaus S; Eubel H; Braun HP
    Methods Mol Biol; 2007; 372():315-24. PubMed ID: 18314736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.