These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 2061037)

  • 1. Modeling gamma absorbed dose due to meandering plumes.
    Overcamp TJ
    Health Phys; 1991 Jul; 61(1):111-5. PubMed ID: 2061037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple approximation for estimating centerline gamma absorbed dose rates due to a continuous Gaussian plume.
    Overcamp TJ; Fjeld RA
    Health Phys; 1987 Aug; 53(2):143-6. PubMed ID: 3610640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An approximate method for estimating the short-term centerline gamma absorbed dose due to a continuous, ground-level release.
    Nie YF; Overcamp TJ; Fjeld RA
    Health Phys; 1985 Jul; 49(1):100-5. PubMed ID: 4008256
    [No Abstract]   [Full Text] [Related]  

  • 4. Rapid determination of noble gas radionuclide concentrations in power reactor plumes.
    Gogolak CV
    Health Phys; 1984 Apr; 46(4):783-92. PubMed ID: 6323352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced integral solutions for gamma absorbed dose from Gaussian plume.
    Gorshkov VE; Karmazin IP; Tarasov VI
    Health Phys; 1995 Aug; 69(2):210-8. PubMed ID: 7622367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorbed dose from traversing spherically symmetric, Gaussian radioactive clouds.
    Thompson JM; Poston JW
    Health Phys; 1999 Jun; 76(6):639-43. PubMed ID: 10334580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An exact solution to the Gaussian cloud approximation for gamma absorbed dose due to a ground-level release.
    Overcamp TJ; Fjeld RA
    Health Phys; 1983 Apr; 44(4):367-72. PubMed ID: 6841093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of effective dose in retrospective dose assessment.
    Baverstock K; Thorne MC
    Health Phys; 2003 Jul; 85(1):110-1; author reply 111-2. PubMed ID: 12852478
    [No Abstract]   [Full Text] [Related]  

  • 9. [Chernobyl accident: dosimetric evaluation and estimation of risks].
    De Crescenzo S; Tosi G; Giacomelli M; Granata M; Pertosa M; Tamponi M; Verini M; Zanni D
    Radiol Med; 1986 Oct; 72(10):699-704. PubMed ID: 3775087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atmospheric radioactivity in Valencia, Spain, due to the Chernobyl reactor accident.
    Ferrero JL; Jordá ML; Milió J; Monforte L; Moreno A; Navarro E; Senent F; Soriano A; Baeza A; del Río M
    Health Phys; 1987 Nov; 53(5):519-24. PubMed ID: 3667277
    [No Abstract]   [Full Text] [Related]  

  • 11. Experimental evaluation of gamma fluence-rate predictions from Argon-41 releases to the atmosphere over a nuclear research reactor site.
    Rojas-Palma C; Aage HK; Astrup P; Bargholz K; Drews M; Jørgensen HE; Korsbech U; Lauritzen B; Mikkelsen T; Thykier-Nielsen S; Van Ammel R
    Radiat Prot Dosimetry; 2004; 108(2):161-8. PubMed ID: 14978295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast correction of cloud dose data files due to changes in dispersion parameters.
    Vuori S
    Health Phys; 1978 Jun; 34(6):727-30. PubMed ID: 730530
    [No Abstract]   [Full Text] [Related]  

  • 13. Radiation doses due to long-range transport of airborne radionuclides released by a reactor accident--effects of changing dispersion conditions during transport.
    Nordlund G; Partanen JP; Rossi J; Savolainen I; Valkama I
    Health Phys; 1985 Dec; 49(6):1239-49. PubMed ID: 4077526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of radioactive plume gamma dose over a complex terrain using Lagrangian particle dispersion model.
    Rakesh PT; Venkatesan R; Hedde T; Roubin P; Baskaran R; Venkatraman B
    J Environ Radioact; 2015 Jul; 145():30-39. PubMed ID: 25863323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An attempt for modeling the atmospheric transport of 3H around Kakrapar Atomic Power Station.
    Patra AK; Nankar DP; Joshi CP; Venkataraman S; Sundar D; Hegde AG
    Radiat Prot Dosimetry; 2008; 130(3):351-7. PubMed ID: 18664562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the MCNP calculated and measured radiation field quantities near the RB reactor.
    Pesić MP; Ninković MM
    Health Phys; 1999 Sep; 77(3):276-81. PubMed ID: 10456498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of immersion doses from external exposure to a plume of radioactive material.
    Raza S; Avila R
    Health Phys; 2005 Sep; 89(3):247-54. PubMed ID: 16096500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dose quantities and instrumentation for measuring environmental gamma radiation during emergencies.
    Clark MJ; Burgess PH; McClure DR
    Health Phys; 1993 May; 64(5):491-501. PubMed ID: 8491600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solutions to the Gaussian cloud approximation for gamma absorbed dose.
    Overcamp TJ
    Health Phys; 2007 Jan; 92(1):78-81. PubMed ID: 17164603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Atmospheric Dispersion Theory to Inform the Design of a Short-lived Radioactive Particle Release Experiment.
    Rishel JP; Keillor ME; Arrigo LM; Baciak JE; Detwiler RS; Kernan WJ; Kirkham RR; Milbrath BD; Seifert A; Seifert CE; Smart JE
    Health Phys; 2016 May; 110(5):526-32. PubMed ID: 27023039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.