BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 20610423)

  • 1. Contrasts between organic participation in apatite biomineralization in brachiopod shell and vertebrate bone identified by nuclear magnetic resonance spectroscopy.
    Neary MT; Reid DG; Mason MJ; Friscic T; Duer MJ; Cusack M
    J R Soc Interface; 2011 Feb; 8(55):282-8. PubMed ID: 20610423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the phosphatic mineral of the barnacle Ibla cumingi at atomic level by solid-state nuclear magnetic resonance: comparison with other phosphatic biominerals.
    Reid DG; Mason MJ; Chan BK; Duer MJ
    J R Soc Interface; 2012 Jul; 9(72):1510-6. PubMed ID: 22298816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apatite in kidney stones is a molecular composite with glycosaminoglycans and proteins: evidence from nuclear magnetic resonance spectroscopy, and relevance to Randall's plaque, pathogenesis and prophylaxis.
    Reid DG; Jackson GJ; Duer MJ; Rodgers AL
    J Urol; 2011 Feb; 185(2):725-30. PubMed ID: 21168873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of organophosphatic brachiopod shells: spectroscopic assessment of collagen matrix and biomineral components.
    Agbaje OBA; George SC; Zhang Z; Brock GA; Holmer LE
    RSC Adv; 2020 Oct; 10(63):38456-38467. PubMed ID: 35517531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Lingula genome provides insights into brachiopod evolution and the origin of phosphate biomineralization.
    Luo YJ; Takeuchi T; Koyanagi R; Yamada L; Kanda M; Khalturina M; Fujie M; Yamasaki SI; Endo K; Satoh N
    Nat Commun; 2015 Sep; 6():8301. PubMed ID: 26383154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of modern calcite- (Mergerlia truncata) and phosphate-shelled brachiopods (Discradisca stella and Lingula anatina) determined by nanoindentation.
    Merkel C; Deuschle J; Griesshaber E; Enders S; Steinhauser E; Hochleitner R; Brand U; Schmahl WW
    J Struct Biol; 2009 Dec; 168(3):396-408. PubMed ID: 19729068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mineral surface in calcified plaque is like that of bone: further evidence for regulated mineralization.
    Duer MJ; Friscić T; Proudfoot D; Reid DG; Schoppet M; Shanahan CM; Skepper JN; Wise ER
    Arterioscler Thromb Vasc Biol; 2008 Nov; 28(11):2030-4. PubMed ID: 18703777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water-mediated structuring of bone apatite.
    Wang Y; Von Euw S; Fernandes FM; Cassaignon S; Selmane M; Laurent G; Pehau-Arnaudet G; Coelho C; Bonhomme-Coury L; Giraud-Guille MM; Babonneau F; Azaïs T; Nassif N
    Nat Mater; 2013 Dec; 12(12):1144-53. PubMed ID: 24193662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The contribution of solid-state NMR spectroscopy to understanding biomineralization: atomic and molecular structure of bone.
    Duer MJ
    J Magn Reson; 2015 Apr; 253():98-110. PubMed ID: 25797009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orientation of apatite and organic matrix in Lingula unguis shell.
    Iijima M; Moriwaki Y
    Calcif Tissue Int; 1990 Oct; 47(4):237-42. PubMed ID: 2242496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amorphous surface layer versus transient amorphous precursor phase in bone - A case study investigated by solid-state NMR spectroscopy.
    Von Euw S; Ajili W; Chan-Chang TH; Delices A; Laurent G; Babonneau F; Nassif N; Azaïs T
    Acta Biomater; 2017 Sep; 59():351-360. PubMed ID: 28690009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly ordered interstitial water observed in bone by nuclear magnetic resonance.
    Wilson EE; Awonusi A; Morris MD; Kohn DH; Tecklenburg MM; Beck LW
    J Bone Miner Res; 2005 Apr; 20(4):625-34. PubMed ID: 15765182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mineral phase of calcified cartilage: its molecular structure and interface with the organic matrix.
    Duer MJ; Friscić T; Murray RC; Reid DG; Wise ER
    Biophys J; 2009 Apr; 96(8):3372-8. PubMed ID: 19383480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Magellania venosa Biomineralizing Proteome: A Window into Brachiopod Shell Evolution.
    Jackson DJ; Mann K; Häussermann V; Schilhabel MB; Lüter C; Griesshaber E; Schmahl W; Wörheide G
    Genome Biol Evol; 2015 Apr; 7(5):1349-62. PubMed ID: 25912046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular matrix mineralization in murine MC3T3-E1 osteoblast cultures: an ultrastructural, compositional and comparative analysis with mouse bone.
    Addison WN; Nelea V; Chicatun F; Chien YC; Tran-Khanh N; Buschmann MD; Nazhat SN; Kaartinen MT; Vali H; Tecklenburg MM; Franceschi RT; McKee MD
    Bone; 2015 Feb; 71():244-56. PubMed ID: 25460184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural description of surfaces and interfaces in biominerals by DNP SENS.
    Azaïs T; Von Euw S; Ajili W; Auzoux-Bordenave S; Bertani P; Gajan D; Emsley L; Nassif N; Lesage A
    Solid State Nucl Magn Reson; 2019 Oct; 102():2-11. PubMed ID: 31216494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution and diversity of biomineralized columnar architecture in early Cambrian phosphatic-shelled brachiopods.
    Zhang Z; Zhang Z; Holmer L; Topper TP; Pan B; Li G
    Elife; 2024 Apr; 12():. PubMed ID: 38597930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shell proteome of rhynchonelliform brachiopods.
    Immel F; Gaspard D; Marie A; Guichard N; Cusack M; Marin F
    J Struct Biol; 2015 Jun; 190(3):360-6. PubMed ID: 25896726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of acidic phosphoproteins in biomineralization.
    Alvares K
    Connect Tissue Res; 2014; 55(1):34-40. PubMed ID: 24437603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possible co-option of
    Shimizu K; Luo YJ; Satoh N; Endo K
    Biol Lett; 2017 Aug; 13(8):. PubMed ID: 28768795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.