These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 2061045)

  • 1. Effects of low-energy electromagnetic fields (pulsed and DC) on membrane signal transduction processes in biological systems.
    Luben RA
    Health Phys; 1991 Jul; 61(1):15-28. PubMed ID: 2061045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulsed Electromagnetic Fields in Bone Healing: Molecular Pathways and Clinical Applications.
    Caliogna L; Medetti M; Bina V; Brancato AM; Castelli A; Jannelli E; Ivone A; Gastaldi G; Annunziata S; Mosconi M; Pasta G
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular change signal-to-noise criteria for interpreting experiments involving exposure of biological systems to weakly interacting electromagnetic fields.
    Vaughan TE; Weaver JC
    Bioelectromagnetics; 2005 May; 26(4):305-22. PubMed ID: 15832332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell membranes: the electromagnetic environment and cancer promotion.
    Adey WR
    Neurochem Res; 1988 Jul; 13(7):671-7. PubMed ID: 3045687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological effects of electromagnetic fields.
    Adey WR
    J Cell Biochem; 1993 Apr; 51(4):410-6. PubMed ID: 8388394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hypothetical mathematical construct explaining the mechanism of biological amplification in an experimental model utilizing picoTesla (PT) electromagnetic fields.
    Saxena A; Jacobson J; Yamanashi W; Scherlag B; Lamberth J; Saxena B
    Med Hypotheses; 2003 Jun; 60(6):821-39. PubMed ID: 12699707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digression on chemical electromagnetic field effects in membrane signal transduction--cooperativity paradigm of the acetylcholine receptor.
    Neumann E
    Bioelectrochemistry; 2000 Sep; 52(1):43-9. PubMed ID: 11059576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of gap junction intercellular communication by extremely low-frequency electromagnetic fields in osteoblast-like models is dependent on cell differentiation.
    Yamaguchi DT; Huang J; Ma D; Wang PK
    J Cell Physiol; 2002 Feb; 190(2):180-8. PubMed ID: 11807822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation of bone formation and fracture healing with pulsed electromagnetic fields: biologic responses and clinical implications.
    Chalidis B; Sachinis N; Assiotis A; Maccauro G
    Int J Immunopathol Pharmacol; 2011; 24(1 Suppl 2):17-20. PubMed ID: 21669132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of different types of electromagnetic fields on skin reparatory processes in experimental animals.
    Matic M; Lazetic B; Poljacki M; Djuran V; Matic A; Gajinov Z
    Lasers Med Sci; 2009 May; 24(3):321-7. PubMed ID: 18536960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Issues in electromagnetic field-biointeractions.
    Behari J
    Indian J Biochem Biophys; 1999 Oct; 36(5):352-60. PubMed ID: 10844988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Biological effects and their applications in medicine of pulsed electric fields].
    Huang H; Song G; Wang G; Sun C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):230-4. PubMed ID: 17333929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapeutic effects of electromagnetic fields in the stimulation of connective tissue repair.
    Aaron RK; Ciombor DM
    J Cell Biochem; 1993 May; 52(1):42-6. PubMed ID: 8320274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of electromagnetic fields on cells: physiological and therapeutical approaches and molecular mechanisms of interaction. A review.
    Funk RH; Monsees TK
    Cells Tissues Organs; 2006; 182(2):59-78. PubMed ID: 16804297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mechanism for action of oscillating electric fields on cells.
    Panagopoulos DJ; Messini N; Karabarbounis A; Philippetis AL; Margaritis LH
    Biochem Biophys Res Commun; 2000 Jun; 272(3):634-40. PubMed ID: 10860806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wound Repair and Extremely Low Frequency-Electromagnetic Field: Insight from In Vitro Study and Potential Clinical Application.
    Gualdi G; Costantini E; Reale M; Amerio P
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34068809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular recognition and processing of periodic signals in cells: study of activation of membrane ATPases by alternating electric fields.
    Tsong TY
    Biochim Biophys Acta; 1992 Mar; 1113(1):53-70. PubMed ID: 1532330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of ultrasound and electromagnetic field effects on osteoblast growth.
    Li JK; Lin JC; Liu HC; Sun JS; Ruaan RC; Shih C; Chang WH
    Ultrasound Med Biol; 2006 May; 32(5):769-75. PubMed ID: 16677936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of electromagnetic stimuli on bone and bone cells in vitro: inhibition of responses to parathyroid hormone by low-energy low-frequency fields.
    Luben RA; Cain CD; Chen MC; Rosen DM; Adey WR
    Proc Natl Acad Sci U S A; 1982 Jul; 79(13):4180-4. PubMed ID: 6287472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mechanism for action of extremely low frequency electromagnetic fields on biological systems.
    Balcavage WX; Alvager T; Swez J; Goff CW; Fox MT; Abdullyava S; King MW
    Biochem Biophys Res Commun; 1996 May; 222(2):374-8. PubMed ID: 8670212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.