BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 20610766)

  • 21. Altered KCNQ3 potassium channel function caused by the W309R pore-helix mutation found in human epilepsy.
    Uehara A; Nakamura Y; Shioya T; Hirose S; Yasukochi M; Uehara K
    J Membr Biol; 2008 Mar; 222(2):55-63. PubMed ID: 18425618
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pore helix-S6 interactions are critical in governing current amplitudes of KCNQ3 K+ channels.
    Choveau FS; Bierbower SM; Shapiro MS
    Biophys J; 2012 Jun; 102(11):2499-509. PubMed ID: 22713565
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Made for "anchorin": Kv7.2/7.3 (KCNQ2/KCNQ3) channels and the modulation of neuronal excitability in vertebrate axons.
    Cooper EC
    Semin Cell Dev Biol; 2011 Apr; 22(2):185-92. PubMed ID: 20940059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinct subunit contributions to the activation of M-type potassium channels by PI(4,5)P2.
    Telezhkin V; Brown DA; Gibb AJ
    J Gen Physiol; 2012 Jul; 140(1):41-53. PubMed ID: 22689829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of neuronal M-channel gating in an isoform-specific manner: functional interplay between calmodulin and syntaxin 1A.
    Etzioni A; Siloni S; Chikvashvilli D; Strulovich R; Sachyani D; Regev N; Greitzer-Antes D; Hirsch JA; Lotan I
    J Neurosci; 2011 Oct; 31(40):14158-71. PubMed ID: 21976501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequence determinants of subtype-specific actions of KCNQ channel openers.
    Wang AW; Yang R; Kurata HT
    J Physiol; 2017 Feb; 595(3):663-676. PubMed ID: 27506413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional analysis of novel KCNQ2 mutations found in patients with Benign Familial Neonatal Convulsions.
    Volkers L; Rook MB; Das JH; Verbeek NE; Groenewegen WA; van Kempen MJ; Lindhout D; Koeleman BP
    Neurosci Lett; 2009 Oct; 462(1):24-9. PubMed ID: 19559753
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional expression of two KvLQT1-related potassium channels responsible for an inherited idiopathic epilepsy.
    Yang WP; Levesque PC; Little WA; Conder ML; Ramakrishnan P; Neubauer MG; Blanar MA
    J Biol Chem; 1998 Jul; 273(31):19419-23. PubMed ID: 9677360
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A possible link between KCNQ2- and STXBP1-related encephalopathies: STXBP1 reduces the inhibitory impact of syntaxin-1A on M current.
    Devaux J; Dhifallah S; De Maria M; Stuart-Lopez G; Becq H; Milh M; Molinari F; Aniksztejn L
    Epilepsia; 2017 Dec; 58(12):2073-2084. PubMed ID: 29067685
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Epilepsy-associated mutations in the voltage sensor of KCNQ3 affect voltage dependence of channel opening.
    Barro-Soria R
    J Gen Physiol; 2019 Feb; 151(2):247-257. PubMed ID: 30578330
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kv7 channels can function without constitutive calmodulin tethering.
    Gómez-Posada JC; Aivar P; Alberdi A; Alaimo A; Etxeberría A; Fernández-Orth J; Zamalloa T; Roura-Ferrer M; Villace P; Areso P; Casis O; Villarroel A
    PLoS One; 2011; 6(9):e25508. PubMed ID: 21980481
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of KCNQ2 gene truncation on M-type Kv7 potassium currents.
    Robbins J; Passmore GM; Abogadie FC; Reilly JM; Brown DA
    PLoS One; 2013; 8(8):e71809. PubMed ID: 23977150
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polarized axonal surface expression of neuronal KCNQ channels is mediated by multiple signals in the KCNQ2 and KCNQ3 C-terminal domains.
    Chung HJ; Jan YN; Jan LY
    Proc Natl Acad Sci U S A; 2006 Jun; 103(23):8870-5. PubMed ID: 16735477
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of the voltage-gated K(+) channels KCNQ2/3 and KCNQ3/5 by serum- and glucocorticoid-regulated kinase-1.
    Schuetz F; Kumar S; Poronnik P; Adams DJ
    Am J Physiol Cell Physiol; 2008 Jul; 295(1):C73-80. PubMed ID: 18463232
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reconstitution of muscarinic modulation of the KCNQ2/KCNQ3 K(+) channels that underlie the neuronal M current.
    Shapiro MS; Roche JP; Kaftan EJ; Cruzblanca H; Mackie K; Hille B
    J Neurosci; 2000 Mar; 20(5):1710-21. PubMed ID: 10684873
    [TBL] [Abstract][Full Text] [Related]  

  • 36. C-terminal interaction of KCNQ2 and KCNQ3 K+ channels.
    Maljevic S; Lerche C; Seebohm G; Alekov AK; Busch AE; Lerche H
    J Physiol; 2003 Apr; 548(Pt 2):353-60. PubMed ID: 12640002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Ankyrin-G N-terminal Gate and Protein Kinase CK2 Dually Regulate Binding of Voltage-gated Sodium and KCNQ2/3 Potassium Channels.
    Xu M; Cooper EC
    J Biol Chem; 2015 Jul; 290(27):16619-32. PubMed ID: 25998125
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of the voltage-gated K(+) channels KCNQ2/3 and KCNQ3/5 by ubiquitination. Novel role for Nedd4-2.
    Ekberg J; Schuetz F; Boase NA; Conroy SJ; Manning J; Kumar S; Poronnik P; Adams DJ
    J Biol Chem; 2007 Apr; 282(16):12135-42. PubMed ID: 17322297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kv7.2 regulates the function of peripheral sensory neurons.
    King CH; Lancaster E; Salomon D; Peles E; Scherer SS
    J Comp Neurol; 2014 Oct; 522(14):3262-80. PubMed ID: 24687876
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular correlates of the M-current in cultured rat hippocampal neurons.
    Shah M; Mistry M; Marsh SJ; Brown DA; Delmas P
    J Physiol; 2002 Oct; 544(Pt 1):29-37. PubMed ID: 12356878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.