BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 20610780)

  • 21. Modeling gravity-dependent plasticity of the angular vestibuloocular reflex with a physiologically based neural network.
    Xiang Y; Yakushin SB; Cohen B; Raphan T
    J Neurophysiol; 2006 Dec; 96(6):3349-61. PubMed ID: 16971684
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The vestibulo-ocular reflex of hypergravity rats.
    Wubbels RJ; de Jong HA
    J Gravit Physiol; 2001 Jul; 8(1):P113-4. PubMed ID: 12650194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of aging on the otolith-ocular reflex.
    Furman JM; Redfern MS
    J Vestib Res; 2001; 11(2):91-103. PubMed ID: 11847453
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural processing of gravito-inertial cues in humans. IV. Influence of visual rotational cues during roll optokinetic stimuli.
    Zupan LH; Merfeld DM
    J Neurophysiol; 2003 Jan; 89(1):390-400. PubMed ID: 12522188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A multidimensional model of the effect of gravity on the spatial orientation of the monkey.
    Merfeld DM; Young LR; Oman CM; Shelhamer MJ
    J Vestib Res; 1993; 3(2):141-61. PubMed ID: 8275250
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gravity-specific adaptation of the angular vestibuloocular reflex: dependence on head orientation with regard to gravity.
    Yakushin SB; Raphan T; Cohen B
    J Neurophysiol; 2003 Jan; 89(1):571-86. PubMed ID: 12522203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Viewing distance dependence of the vestibulo-ocular reflex during translation: extra-otolith influences.
    Wei M; Angelaki DE
    Vision Res; 2004 Apr; 44(9):933-42. PubMed ID: 14992837
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of body orientation and rotation axis on pitch visual-vestibular interaction.
    Clément G; Wood SJ; Lathan CE; Peterka RJ; Reschke MF
    J Vestib Res; 1999; 9(1):1-11. PubMed ID: 10334011
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-frequency otolith and semicircular canal interactions after canal inactivation.
    Angelaki DE; Merfeld DM; Hess BJ
    Exp Brain Res; 2000 Jun; 132(4):539-49. PubMed ID: 10912835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vestibular convergence patterns in vestibular nuclei neurons of alert primates.
    Dickman JD; Angelaki DE
    J Neurophysiol; 2002 Dec; 88(6):3518-33. PubMed ID: 12466465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Eyes on target: what neurons must do for the vestibuloocular reflex during linear motion.
    Angelaki DE
    J Neurophysiol; 2004 Jul; 92(1):20-35. PubMed ID: 15212435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Implanted Vestibular Prosthesis Improves Spatial Orientation in Animals with Severe Vestibular Damage.
    Karmali F; Haburcakova C; Gong W; Della Santina CC; Merfeld DM; Lewis RF
    J Neurosci; 2021 Apr; 41(17):3879-3888. PubMed ID: 33731447
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inactivation of semicircular canals causes adaptive increases in otolith-driven tilt responses.
    Angelaki DE; Newlands SD; Dickman JD
    J Neurophysiol; 2002 Mar; 87(3):1635-40. PubMed ID: 11877533
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relationships between observer and Kalman Filter models for human dynamic spatial orientation.
    Selva P; Oman CM
    J Vestib Res; 2012 Jan; 22(2):69-80. PubMed ID: 23000607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computation of inertial motion: neural strategies to resolve ambiguous otolith information.
    Angelaki DE; McHenry MQ; Dickman JD; Newlands SD; Hess BJ
    J Neurosci; 1999 Jan; 19(1):316-27. PubMed ID: 9870961
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lesion of the nodulus and ventral uvula abolish steady-state off-vertical axis otolith response.
    Angelaki DE; Hess BJ
    J Neurophysiol; 1995 Apr; 73(4):1716-20. PubMed ID: 7643178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Canal and otolith contributions to compensatory tilt responses in pigeons.
    McArthur KL; Dickman JD
    J Neurophysiol; 2008 Sep; 100(3):1488-97. PubMed ID: 18632885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of motion paradigm on human perception of tilt and translation.
    Clément G; Beaton KH; Reschke MF; Wood SJ
    Sci Rep; 2022 Jan; 12(1):1430. PubMed ID: 35082357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Organizational principles of otolith- and semicircular canal-ocular reflexes in rhesus monkeys.
    Angelaki DE; Hess BJ
    Ann N Y Acad Sci; 1996 Jun; 781():332-47. PubMed ID: 8694425
    [No Abstract]   [Full Text] [Related]  

  • 40. Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements.
    Zupan LH; Merfeld DM; Darlot C
    Biol Cybern; 2002 Mar; 86(3):209-30. PubMed ID: 12068787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.