These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 2061213)
41. Conductive hearing loss results in changes in cytochrome oxidase activity in gerbil central auditory system. Tucci D; Cant NB; Durham D J Assoc Res Otolaryngol; 2002 Mar; 3(1):89-106. PubMed ID: 12083727 [TBL] [Abstract][Full Text] [Related]
42. Intrinsic connections within and between cochlear nucleus subdivisions in cat. Snyder RL; Leake PA J Comp Neurol; 1988 Dec; 278(2):209-25. PubMed ID: 3230161 [TBL] [Abstract][Full Text] [Related]
43. Tonotopic action potential tuning of maturing auditory neurons through endogenous ATP. Jovanovic S; Radulovic T; Coddou C; Dietz B; Nerlich J; Stojilkovic SS; Rübsamen R; Milenkovic I J Physiol; 2017 Feb; 595(4):1315-1337. PubMed ID: 28030754 [TBL] [Abstract][Full Text] [Related]
44. Some physiological consequences of neonatal cochlear destruction in the inferior colliculus of the gerbil, Meriones unguiculatus. Kitzes LM Brain Res; 1984 Jul; 306(1-2):171-8. PubMed ID: 6466971 [TBL] [Abstract][Full Text] [Related]
45. Differential impact of temporary and permanent noise-induced hearing loss on neuronal cell density in the mouse central auditory pathway. Gröschel M; Götze R; Ernst A; Basta D J Neurotrauma; 2010 Aug; 27(8):1499-507. PubMed ID: 20504154 [TBL] [Abstract][Full Text] [Related]
46. Responses of DCN-PVCN neurons and auditory nerve fibers in unanesthetized decerebrate cats to AM and pure tones: analysis with autocorrelation/power-spectrum. Kim DO; Sirianni JG; Chang SO Hear Res; 1990 Apr; 45(1-2):95-113. PubMed ID: 2345121 [TBL] [Abstract][Full Text] [Related]
47. Regional distribution of neurotrophin receptors in the developing auditory brainstem. Hafidi A; Moore T; Sanes DH J Comp Neurol; 1996 Apr; 367(3):454-64. PubMed ID: 8698904 [TBL] [Abstract][Full Text] [Related]
48. Relationship of neural and otoacoustic emission thresholds during endocochlear potential development in the gerbil. Mills DM J Acoust Soc Am; 2004 Aug; 116(2):1035-43. PubMed ID: 15376670 [TBL] [Abstract][Full Text] [Related]
49. Responses of medial olivocochlear neurons. Specifying the central pathways of the medial olivocochlear reflex. Brown MC; de Venecia RK; Guinan JJ Exp Brain Res; 2003 Dec; 153(4):491-8. PubMed ID: 14557911 [TBL] [Abstract][Full Text] [Related]
50. Age-dependent changes in the lateral superior olive of the gerbil (Meriones unguiculatus). Gleich O; Weiss M; Strutz J Hear Res; 2004 Aug; 194(1-2):47-59. PubMed ID: 15276675 [TBL] [Abstract][Full Text] [Related]
51. Concurrent gradients of ribbon volume and AMPA-receptor patch volume in cochlear afferent synapses on gerbil inner hair cells. Zhang L; Engler S; Koepcke L; Steenken F; Köppl C Hear Res; 2018 Jul; 364():81-89. PubMed ID: 29631778 [TBL] [Abstract][Full Text] [Related]
52. Morphometric study of the anteroventral cochlear nucleus of two mouse models of presbycusis. Willott JF; Jackson LM; Hunter KP J Comp Neurol; 1987 Jun; 260(3):472-80. PubMed ID: 3597843 [TBL] [Abstract][Full Text] [Related]
53. Selective hair cell ablation and noise exposure lead to different patterns of changes in the cochlea and the cochlear nucleus. Kurioka T; Lee MY; Heeringa AN; Beyer LA; Swiderski DL; Kanicki AC; Kabara LL; Dolan DF; Shore SE; Raphael Y Neuroscience; 2016 Sep; 332():242-57. PubMed ID: 27403879 [TBL] [Abstract][Full Text] [Related]
54. Cochlear ablation effects on amino acid levels in the chinchilla cochlear nucleus. Godfrey DA; Chen K; Godfrey MA; Lee AC; Crass SP; Shipp D; Simo H; Robinson KT Neuroscience; 2015 Jun; 297():137-59. PubMed ID: 25839146 [TBL] [Abstract][Full Text] [Related]
55. Effects of omni-directional noise-exposure during hearing onset and age on auditory spatial resolution in the Mongolian gerbil (Meriones unguiculatus) -- a behavioral approach. Maier JK; Kindermann T; Grothe B; Klump GM Brain Res; 2008 Jul; 1220():47-57. PubMed ID: 18343357 [TBL] [Abstract][Full Text] [Related]
56. Age-related changes in the central auditory system: comparison of D-galactose-induced aging rats and naturally aging rats. Chen B; Zhong Y; Peng W; Sun Y; Kong WJ Brain Res; 2010 Jul; 1344():43-53. PubMed ID: 20470764 [TBL] [Abstract][Full Text] [Related]
57. Development of tonotopic representation in the Mongolian gerbil: a 2-deoxyglucose study. Ryan AF; Woolf NK Brain Res; 1988 Jun; 469(1-2):61-70. PubMed ID: 3401808 [TBL] [Abstract][Full Text] [Related]
58. Effects of lifetime noise exposure on the middle-age human auditory brainstem response, tinnitus and speech-in-noise intelligibility. Valderrama JT; Beach EF; Yeend I; Sharma M; Van Dun B; Dillon H Hear Res; 2018 Aug; 365():36-48. PubMed ID: 29913342 [TBL] [Abstract][Full Text] [Related]
59. Phosphorylated cAMP response element-binding protein levels in guinea pig brainstem auditory nuclei after unilateral cochlear ablation. Mo Z; Suneja SK; Potashner SJ J Neurosci Res; 2006 May; 83(7):1323-30. PubMed ID: 16511870 [TBL] [Abstract][Full Text] [Related]
60. BDNF mRNA expression and protein localization are changed in age-related hearing loss. Rüttiger L; Panford-Walsh R; Schimmang T; Tan J; Zimmermann U; Rohbock K; Köpschall I; Limberger A; Müller M; Fraenzer JT; Cimerman J; Knipper M Neurobiol Aging; 2007 Apr; 28(4):586-601. PubMed ID: 16580094 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]