These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 2061315)

  • 1. Heat shock factor-independent heat control of transcription of the CTT1 gene encoding the cytosolic catalase T of Saccharomyces cerevisiae.
    Wieser R; Adam G; Wagner A; Schüller C; Marchler G; Ruis H; Krawiec Z; Bilinski T
    J Biol Chem; 1991 Jul; 266(19):12406-11. PubMed ID: 2061315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Negative regulation of transcription of the Saccharomyces cerevisiae catalase T (CTT1) gene by cAMP is mediated by a positive control element.
    Belazzi T; Wagner A; Wieser R; Schanz M; Adam G; Hartig A; Ruis H
    EMBO J; 1991 Mar; 10(3):585-92. PubMed ID: 1848176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions.
    Marchler G; Schüller C; Adam G; Ruis H
    EMBO J; 1993 May; 12(5):1997-2003. PubMed ID: 8387917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heme control region of the catalase T gene of the yeast Saccharomyces cerevisiae.
    Spevak W; Hartig A; Meindl P; Ruis H
    Mol Gen Genet; 1986 Apr; 203(1):73-8. PubMed ID: 2423850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and regulation of the SSA4 HSP70 gene of Saccharomyces cerevisiae.
    Boorstein WR; Craig EA
    J Biol Chem; 1990 Nov; 265(31):18912-21. PubMed ID: 2121731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for a heat shock transcription factor-independent mechanism for heat shock induction of transcription in Saccharomyces cerevisiae.
    Kobayashi N; McEntee K
    Proc Natl Acad Sci U S A; 1990 Sep; 87(17):6550-4. PubMed ID: 2118651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene.
    Schüller C; Brewster JL; Alexander MR; Gustin MC; Ruis H
    EMBO J; 1994 Sep; 13(18):4382-9. PubMed ID: 7523111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional regulation of SSA3, an HSP70 gene from Saccharomyces cerevisiae.
    Boorstein WR; Craig EA
    Mol Cell Biol; 1990 Jun; 10(6):3262-7. PubMed ID: 2188113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of the catalase A gene of Saccharomyces cerevisiae by complementation of the cta1 mutation.
    Cohen G; Fessl F; Traczyk A; Rytka J; Ruis H
    Mol Gen Genet; 1985; 200(1):74-9. PubMed ID: 3897793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Saccharomyces cerevisiae catalase gene expression by copper.
    Lapinskas P; Ruis H; Culotta V
    Curr Genet; 1993 Nov; 24(5):388-93. PubMed ID: 8299153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple independent regulatory pathways control UBI4 expression after heat shock in Saccharomyces cerevisiae.
    Simon JR; Treger JM; McEntee K
    Mol Microbiol; 1999 Feb; 31(3):823-32. PubMed ID: 10048026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 22 bp cis-acting element is necessary and sufficient for the induction of the yeast KAR2 (BiP) gene by unfolded proteins.
    Mori K; Sant A; Kohno K; Normington K; Gething MJ; Sambrook JF
    EMBO J; 1992 Jul; 11(7):2583-93. PubMed ID: 1628622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conditional silencing: the HMRE mating-type silencer exerts a rapidly reversible position effect on the yeast HSP82 heat shock gene.
    Lee S; Gross DS
    Mol Cell Biol; 1993 Feb; 13(2):727-38. PubMed ID: 8423797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of the major heat shock gene of Drosophila melanogaster in Saccharomyces cerevisiae.
    de Banzie JS; Sinclair L; Lis JT
    Nucleic Acids Res; 1986 Apr; 14(8):3587-601. PubMed ID: 3010243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors.
    Seymour IJ; Piper PW
    Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():231-239. PubMed ID: 10206703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual regulation by heat and nutrient stress of the yeast HSP150 gene encoding a secretory glycoprotein.
    Russo P; Simonen M; Uimari A; Teesalu T; Makarow M
    Mol Gen Genet; 1993 May; 239(1-2):273-80. PubMed ID: 8510655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalase activity is stimulated by H(2)O(2) in rich culture medium and is required for H(2)O(2) resistance and adaptation in yeast.
    Martins D; English AM
    Redox Biol; 2014; 2():308-13. PubMed ID: 24563848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Saccharomyces cerevisiae ADR1 gene is a positive regulator of transcription of genes encoding peroxisomal proteins.
    Simon M; Adam G; Rapatz W; Spevak W; Ruis H
    Mol Cell Biol; 1991 Feb; 11(2):699-704. PubMed ID: 1899286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the DNA damage-inducible gene DDR48 and evidence for its role in mutagenesis in Saccharomyces cerevisiae.
    Treger JM; McEntee K
    Mol Cell Biol; 1990 Jun; 10(6):3174-84. PubMed ID: 2111448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promoter function and in situ protein/DNA interactions upstream of the yeast HSP90 heat shock genes.
    Gross DS; Adams CC; English KE; Collins KW; Lee S
    Antonie Van Leeuwenhoek; 1990 Oct; 58(3):175-86. PubMed ID: 2256678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.