These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 20613857)

  • 1. Asymmetric excitatory synaptic dynamics underlie interaural time difference processing in the auditory system.
    Jercog PE; Svirskis G; Kotak VC; Sanes DH; Rinzel J
    PLoS Biol; 2010 Jun; 8(6):e1000406. PubMed ID: 20613857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive.
    Joris PX
    J Neurophysiol; 1996 Oct; 76(4):2137-56. PubMed ID: 8899590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arrangement of Excitatory Synaptic Inputs on Dendrites of the Medial Superior Olive.
    Callan AR; Heß M; Felmy F; Leibold C
    J Neurosci; 2021 Jan; 41(2):269-283. PubMed ID: 33208467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Test of the Stereausis Hypothesis for Sound Localization in Mammals.
    Plauška A; van der Heijden M; Borst JGG
    J Neurosci; 2017 Jul; 37(30):7278-7289. PubMed ID: 28659280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directional hearing by linear summation of binaural inputs at the medial superior olive.
    van der Heijden M; Lorteije JA; Plauška A; Roberts MT; Golding NL; Borst JG
    Neuron; 2013 Jun; 78(5):936-48. PubMed ID: 23764292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplitude Normalization of Dendritic EPSPs at the Soma of Binaural Coincidence Detector Neurons of the Medial Superior Olive.
    Winters BD; Jin SX; Ledford KR; Golding NL
    J Neurosci; 2017 Mar; 37(12):3138-3149. PubMed ID: 28213442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting binaural responses from monaural responses in the gerbil medial superior olive.
    Plauška A; Borst JG; van der Heijden M
    J Neurophysiol; 2016 Jun; 115(6):2950-63. PubMed ID: 27009164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaural time difference processing in the mammalian medial superior olive: the role of glycinergic inhibition.
    Pecka M; Brand A; Behrend O; Grothe B
    J Neurosci; 2008 Jul; 28(27):6914-25. PubMed ID: 18596166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency-dependent interaural delays in the medial superior olive: implications for interaural cochlear delays.
    Day ML; Semple MN
    J Neurophysiol; 2011 Oct; 106(4):1985-99. PubMed ID: 21775710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory Brainstem Models: Adapting Cochlear Nuclei Improve Spatial Encoding by the Medial Superior Olive in Reverberation.
    Brughera A; Mikiel-Hunter J; Dietz M; McAlpine D
    J Assoc Res Otolaryngol; 2021 Jun; 22(3):289-318. PubMed ID: 33861395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model for interaural time difference sensitivity in the medial superior olive: interaction of excitatory and inhibitory synaptic inputs, channel dynamics, and cellular morphology.
    Zhou Y; Carney LH; Colburn HS
    J Neurosci; 2005 Mar; 25(12):3046-58. PubMed ID: 15788761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the localization of complex sounds: temporal encoding based on input-slope coincidence detection of envelopes.
    Gai Y; Kotak VC; Sanes DH; Rinzel J
    J Neurophysiol; 2014 Aug; 112(4):802-13. PubMed ID: 24848460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational principles of neural adaptation for binaural signal integration.
    Oess T; Ernst MO; Neumann H
    PLoS Comput Biol; 2020 Jul; 16(7):e1008020. PubMed ID: 32678847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of inhibitory synaptic kinetics on the interaural time difference sensitivity in a linear model of binaural coincidence detection.
    Leibold C
    J Acoust Soc Am; 2010 Feb; 127(2):931-942. PubMed ID: 20136216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of synaptic input by GABAB receptors improves coincidence detection for computation of sound location.
    Fischl MJ; Combs TD; Klug A; Grothe B; Burger RM
    J Physiol; 2012 Jul; 590(13):3047-66. PubMed ID: 22473782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiology and anatomy of neurons in the medial superior olive of the mouse.
    Fischl MJ; Burger RM; Schmidt-Pauly M; Alexandrova O; Sinclair JL; Grothe B; Forsythe ID; Kopp-Scheinpflug C
    J Neurophysiol; 2016 Dec; 116(6):2676-2688. PubMed ID: 27655966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binaural response properties of low-frequency neurons in the gerbil dorsal nucleus of the lateral lemniscus.
    Siveke I; Pecka M; Seidl AH; Baudoux S; Grothe B
    J Neurophysiol; 2006 Sep; 96(3):1425-40. PubMed ID: 16571733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of gerbil medial superior olive: integration of temporally delayed excitation and inhibition at physiological temperature.
    Chirila FV; Rowland KC; Thompson JM; Spirou GA
    J Physiol; 2007 Oct; 584(Pt 1):167-90. PubMed ID: 17690144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of GABA on the processing of interaural time differences in nucleus laminaris neurons in the chick.
    Brückner S; Hyson RL
    Eur J Neurosci; 1998 Nov; 10(11):3438-50. PubMed ID: 9824457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils.
    Vollmer M
    J Neurosci; 2018 Aug; 38(31):6949-6966. PubMed ID: 29959238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.