These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 20613981)

  • 1. Connecting mutations of the RNA polymerase II C-terminal domain to complex phenotypic changes using combined gene expression and network analyses.
    Rogers C; Guo Z; Stiller JW
    PLoS One; 2010 Jun; 5(6):e11386. PubMed ID: 20613981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic organization, length conservation, and evolution of RNA polymerase II carboxyl-terminal domain.
    Liu P; Kenney JM; Stiller JW; Greenleaf AL
    Mol Biol Evol; 2010 Nov; 27(11):2628-41. PubMed ID: 20558594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The essential sequence elements required for RNAP II carboxyl-terminal domain function in yeast and their evolutionary conservation.
    Liu P; Greenleaf AL; Stiller JW
    Mol Biol Evol; 2008 Apr; 25(4):719-27. PubMed ID: 18209193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional unit of the RNA polymerase II C-terminal domain lies within heptapeptide pairs.
    Stiller JW; Cook MS
    Eukaryot Cell; 2004 Jun; 3(3):735-40. PubMed ID: 15189994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction and analysis of yeast RNA polymerase II CTD deletion and substitution mutations.
    West ML; Corden JL
    Genetics; 1995 Aug; 140(4):1223-33. PubMed ID: 7498765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression analysis reveals a functional difference between the serines in positions two and five in the consensus sequence of the C-terminal domain of yeast RNA polymerase II.
    Yuryev A; Corden JL
    Genetics; 1996 Jun; 143(2):661-71. PubMed ID: 8725217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA Instability Maintains the Repeat Length of the Yeast RNA Polymerase II C-terminal Domain.
    Morrill SA; Exner AE; Babokhov M; Reinfeld BI; Fuchs SM
    J Biol Chem; 2016 May; 291(22):11540-50. PubMed ID: 27026700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structural perspective of CTD function.
    Meinhart A; Kamenski T; Hoeppner S; Baumli S; Cramer P
    Genes Dev; 2005 Jun; 19(12):1401-15. PubMed ID: 15964991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD.
    Schneider S; Pei Y; Shuman S; Schwer B
    Mol Cell Biol; 2010 May; 30(10):2353-64. PubMed ID: 20231361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic interactions with C-terminal domain (CTD) kinases and the CTD of RNA Pol II suggest a role for ESS1 in transcription initiation and elongation in Saccharomyces cerevisiae.
    Wilcox CB; Rossettini A; Hanes SD
    Genetics; 2004 May; 167(1):93-105. PubMed ID: 15166139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure of Fcp1, an essential RNA polymerase II CTD phosphatase.
    Ghosh A; Shuman S; Lima CD
    Mol Cell; 2008 Nov; 32(4):478-90. PubMed ID: 19026779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The length, phosphorylation state, and primary structure of the RNA polymerase II carboxyl-terminal domain dictate interactions with mRNA capping enzymes.
    Pei Y; Hausmann S; Ho CK; Schwer B; Shuman S
    J Biol Chem; 2001 Jul; 276(30):28075-82. PubMed ID: 11387325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The upstream activator CTF/NF1 and RNA polymerase II share a common element involved in transcriptional activation.
    Xiao H; Lis JT; Xiao H; Greenblatt J; Friesen JD
    Nucleic Acids Res; 1994 Jun; 22(11):1966-73. PubMed ID: 8029001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The RNA polymerase II CTD kinase CTDK-I affects pre-mRNA 3' cleavage/polyadenylation through the processing component Pti1p.
    Skaar DA; Greenleaf AL
    Mol Cell; 2002 Dec; 10(6):1429-39. PubMed ID: 12504017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MPK1/SLT2 Links Multiple Stress Responses with Gene Expression in Budding Yeast by Phosphorylating Tyr1 of the RNAP II CTD.
    Yurko N; Liu X; Yamazaki T; Hoque M; Tian B; Manley JL
    Mol Cell; 2017 Dec; 68(5):913-925.e3. PubMed ID: 29220656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A motif shared by TFIIF and TFIIB mediates their interaction with the RNA polymerase II carboxy-terminal domain phosphatase Fcp1p in Saccharomyces cerevisiae.
    Kobor MS; Simon LD; Omichinski J; Zhong G; Archambault J; Greenblatt J
    Mol Cell Biol; 2000 Oct; 20(20):7438-49. PubMed ID: 11003641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel transcription factor reveals a functional link between the RNA polymerase II CTD and TFIID.
    Koleske AJ; Buratowski S; Nonet M; Young RA
    Cell; 1992 May; 69(5):883-94. PubMed ID: 1591782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetics of transcriptional regulation in yeast: connections to the RNA polymerase II CTD.
    Carlson M
    Annu Rev Cell Dev Biol; 1997; 13():1-23. PubMed ID: 9442866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The CTD code of RNA polymerase II: a structural view.
    Jasnovidova O; Stefl R
    Wiley Interdiscip Rev RNA; 2013; 4(1):1-16. PubMed ID: 23042580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An unusual eukaryotic protein phosphatase required for transcription by RNA polymerase II and CTD dephosphorylation in S. cerevisiae.
    Kobor MS; Archambault J; Lester W; Holstege FC; Gileadi O; Jansma DB; Jennings EG; Kouyoumdjian F; Davidson AR; Young RA; Greenblatt J
    Mol Cell; 1999 Jul; 4(1):55-62. PubMed ID: 10445027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.