These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 20613981)

  • 21. Evolutionary diversity and taxon-specific modifications of the RNA polymerase II C-terminal domain.
    Yang C; Stiller JW
    Proc Natl Acad Sci U S A; 2014 Apr; 111(16):5920-5. PubMed ID: 24711388
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A functional interaction between the C-terminal domain of RNA polymerase II and the negative regulator SIN1.
    Peterson CL; Kruger W; Herskowitz I
    Cell; 1991 Mar; 64(6):1135-43. PubMed ID: 2004420
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic interactions of Spt4-Spt5 and TFIIS with the RNA polymerase II CTD and CTD modifying enzymes in Saccharomyces cerevisiae.
    Lindstrom DL; Hartzog GA
    Genetics; 2001 Oct; 159(2):487-97. PubMed ID: 11606527
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RNA polymerase II carboxy-terminal domain contributes to the response to multiple acidic activators in vitro.
    Liao SM; Taylor IC; Kingston RE; Young RA
    Genes Dev; 1991 Dec; 5(12B):2431-40. PubMed ID: 1752437
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gene-specific RNA polymerase II phosphorylation and the CTD code.
    Kim H; Erickson B; Luo W; Seward D; Graber JH; Pollock DD; Megee PC; Bentley DL
    Nat Struct Mol Biol; 2010 Oct; 17(10):1279-86. PubMed ID: 20835241
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Yeast Spt6 Reads Multiple Phosphorylation Patterns of RNA Polymerase II C-Terminal Domain In Vitro.
    Brázda P; Krejčíková M; Kasiliauskaite A; Šmiřáková E; Klumpler T; Vácha R; Kubíček K; Štefl R
    J Mol Biol; 2020 Jun; 432(14):4092-4107. PubMed ID: 32439331
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Partial truncation of the yeast RNA polymerase II carboxyl-terminal domain preferentially reduces expression of glycolytic genes.
    Meisels E; Gileadi O; Corden JL
    J Biol Chem; 1995 Dec; 270(52):31255-61. PubMed ID: 8537392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cleavage/polyadenylation factor IA associates with the carboxyl-terminal domain of RNA polymerase II in Saccharomyces cerevisiae.
    Barillà D; Lee BA; Proudfoot NJ
    Proc Natl Acad Sci U S A; 2001 Jan; 98(2):445-50. PubMed ID: 11149954
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic interactions between the ESS1 prolyl-isomerase and the RSP5 ubiquitin ligase reveal opposing effects on RNA polymerase II function.
    Wu X; Chang A; Sudol M; Hanes SD
    Curr Genet; 2001 Dec; 40(4):234-42. PubMed ID: 11795843
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cdc15 Phosphorylates the C-terminal Domain of RNA Polymerase II for Transcription during Mitosis.
    Singh AK; Rastogi S; Shukla H; Asalam M; Rath SK; Akhtar MS
    J Biol Chem; 2017 Mar; 292(13):5507-5518. PubMed ID: 28202544
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolution of the RNA polymerase II C-terminal domain.
    Stiller JW; Hall BD
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):6091-6. PubMed ID: 11972039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recognition of RNA polymerase II carboxy-terminal domain by 3'-RNA-processing factors.
    Meinhart A; Cramer P
    Nature; 2004 Jul; 430(6996):223-6. PubMed ID: 15241417
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phospho-site mutants of the RNA Polymerase II C-terminal domain alter subtelomeric gene expression and chromatin modification state in fission yeast.
    Inada M; Nichols RJ; Parsa JY; Homer CM; Benn RA; Hoxie RS; Madhani HD; Shuman S; Schwer B; Pleiss JA
    Nucleic Acids Res; 2016 Nov; 44(19):9180-9189. PubMed ID: 27402158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Allosteric interactions between capping enzyme subunits and the RNA polymerase II carboxy-terminal domain.
    Cho EJ; Rodriguez CR; Takagi T; Buratowski S
    Genes Dev; 1998 Nov; 12(22):3482-7. PubMed ID: 9832501
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphorylation of the C-terminal domain of RNA polymerase II.
    Dahmus ME
    Biochim Biophys Acta; 1995 Apr; 1261(2):171-82. PubMed ID: 7711060
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional interaction of the Ess1 prolyl isomerase with components of the RNA polymerase II initiation and termination machineries.
    Krishnamurthy S; Ghazy MA; Moore C; Hampsey M
    Mol Cell Biol; 2009 Jun; 29(11):2925-34. PubMed ID: 19332564
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure and phase separation of the C-terminal domain of RNA polymerase II.
    Lushpinskaia IP; Flores-Solis D; Zweckstetter M
    Biol Chem; 2023 Jul; 404(8-9):839-844. PubMed ID: 37331973
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trypanosoma brucei RNA polymerase II is phosphorylated in the absence of carboxyl-terminal domain heptapeptide repeats.
    Chapman AB; Agabian N
    J Biol Chem; 1994 Feb; 269(7):4754-60. PubMed ID: 8106443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteomics studies of the interactome of RNA polymerase II C-terminal repeated domain.
    Pineda G; Shen Z; de Albuquerque CP; Reynoso E; Chen J; Tu CC; Tang W; Briggs S; Zhou H; Wang JY
    BMC Res Notes; 2015 Oct; 8():616. PubMed ID: 26515650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The KIN28 gene is required both for RNA polymerase II mediated transcription and phosphorylation of the Rpb1p CTD.
    Valay JG; Simon M; Dubois MF; Bensaude O; Facca C; Faye G
    J Mol Biol; 1995 Jun; 249(3):535-44. PubMed ID: 7783209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.