These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 20614062)

  • 1. Real-time monitoring of suspension cell-cell communication using an integrated microfluidics.
    Xu T; Yue W; Li CW; Yao X; Cai G; Yang M
    Lab Chip; 2010 Sep; 10(17):2271-8. PubMed ID: 20614062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidics study of intracellular calcium response to mechanical stimulation on single suspension cells.
    Xu T; Yue W; Li CW; Yao X; Yang M
    Lab Chip; 2013 Mar; 13(6):1060-9. PubMed ID: 23403699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of intercellular communication by flexible hydrodynamic gating on a microfluidic chip.
    Chen P; Chen P; Feng X; Du W; Liu BF
    Anal Bioanal Chem; 2013 Jan; 405(1):307-14. PubMed ID: 23052886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic device with removable packaging for the real time visualisation of intracellular effects of nanosecond electrical pulses on adherent cells.
    Dalmay C; De Menorval MA; Français O; Mir LM; Le Pioufle B
    Lab Chip; 2012 Nov; 12(22):4709-15. PubMed ID: 23037002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low cost microfluidic cell culture array using normally closed valves for cytotoxicity assay.
    Pasirayi G; Scott SM; Islam M; O'Hare L; Bateson S; Ali Z
    Talanta; 2014 Nov; 129():491-8. PubMed ID: 25127624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring the intracellular calcium response to a dynamic hypertonic environment.
    Huang X; Yue W; Liu D; Yue J; Li J; Sun D; Yang M; Wang Z
    Sci Rep; 2016 Mar; 6():23591. PubMed ID: 27004604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dose-dependent cell-based assays in V-shaped microfluidic channels.
    Li CW; Yang J; Yang M
    Lab Chip; 2006 Jul; 6(7):921-9. PubMed ID: 16804597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic chip-based C. elegans microinjection system for investigating cell-cell communication in vivo.
    Zhao X; Xu F; Tang L; Du W; Feng X; Liu BF
    Biosens Bioelectron; 2013 Dec; 50():28-34. PubMed ID: 23831644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation of isolated ventricular myocytes within an open architecture microarray.
    Klauke N; Smith GL; Cooper JM
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):531-8. PubMed ID: 15759583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell handling using microstructured membranes.
    Irimia D; Toner M
    Lab Chip; 2006 Mar; 6(3):345-52. PubMed ID: 16511616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Intra- and intercellular Ca(2+)-signal transduction].
    Himpens B; Vereecke J
    Verh K Acad Geneeskd Belg; 2000; 62(6):501-63. PubMed ID: 11196579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic cell arrays for metabolic monitoring of stimulated cardiomyocytes.
    Cheng W; Klauke N; Smith G; Cooper JM
    Electrophoresis; 2010 Apr; 31(8):1405-13. PubMed ID: 20333720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated SPPS on continuous-flow radial microfluidic chip.
    Wang W; Huang Y; Liu J; Xie Y; Zhao R; Xiong S; Liu G; Chen Y; Ma H
    Lab Chip; 2011 Mar; 11(5):929-35. PubMed ID: 21270975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intercellular communication upon mechanical stimulation of CPAE- endothelial cells is mediated by nucleotides.
    Moerenhout M; Himpens B; Vereecke J
    Cell Calcium; 2001 Feb; 29(2):125-36. PubMed ID: 11162850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell docking, movement and cell-cell interactions of heterogeneous cell suspensions in a cell manipulation microdevice.
    Lai FL; Wang YH; Chung YW; Hwang SM; Huang LS
    Sensors (Basel); 2011; 11(10):9613-27. PubMed ID: 22163716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices.
    Lin CF; Lee GB; Wang CH; Lee HH; Liao WY; Chou TC
    Biosens Bioelectron; 2006 Feb; 21(8):1468-75. PubMed ID: 16099154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends.
    Zhang C; Xing D; Li Y
    Biotechnol Adv; 2007; 25(5):483-514. PubMed ID: 17601695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography.
    Sundararajan N; Kim D; Berlin AA
    Lab Chip; 2005 Mar; 5(3):350-4. PubMed ID: 15726212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-efficiency single-cell entrapment and fluorescence in situ hybridization analysis using a poly(dimethylsiloxane) microfluidic device integrated with a black poly(ethylene terephthalate) micromesh.
    Matsunaga T; Hosokawa M; Arakaki A; Taguchi T; Mori T; Tanaka T; Takeyama H
    Anal Chem; 2008 Jul; 80(13):5139-45. PubMed ID: 18537270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laminar flow mediated continuous single-cell analysis on a novel poly(dimethylsiloxane) microfluidic chip.
    Deng B; Tian Y; Yu X; Song J; Guo F; Xiao Y; Zhang Z
    Anal Chim Acta; 2014 Apr; 820():104-11. PubMed ID: 24745743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.