BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 20614171)

  • 1. Impact of adenosine nucleotide translocase (ANT) proline isomerization on Ca2+-induced cysteine relative mobility/mitochondrial permeability transition pore.
    Pestana CR; Silva CH; Uyemura SA; Santos AC; Curti C
    J Bioenerg Biomembr; 2010 Aug; 42(4):329-35. PubMed ID: 20614171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca(2+) binding to c-state of adenine nucleotide translocase (ANT)-surrounding cardiolipins enhances (ANT)-Cys(56) relative mobility: a computational-based mitochondrial permeability transition study.
    Pestana CR; Silva CH; Pardo-Andreu GL; Rodrigues FP; Santos AC; Uyemura SA; Curti C
    Biochim Biophys Acta; 2009 Mar; 1787(3):176-82. PubMed ID: 19161974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase.
    Halestrap AP; Davidson AM
    Biochem J; 1990 May; 268(1):153-60. PubMed ID: 2160810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. To involvement the conformation of the adenine nucleotide translocase in opening the Tl(+)-induced permeability transition pore in Ca(2+)-loaded rat liver mitochondria.
    Korotkov SM; Konovalova SA; Brailovskaya IV; Saris NE
    Toxicol In Vitro; 2016 Apr; 32():320-32. PubMed ID: 26835787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diamide accelerates opening of the Tl(+)-induced permeability transition pore in Ca(2+)-loaded rat liver mitochondria.
    Korotkov SM; Konovalova SA; Brailovskaya IV
    Biochem Biophys Res Commun; 2015 Dec 4-11; 468(1-2):360-4. PubMed ID: 26518646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition.
    Leung AW; Varanyuwatana P; Halestrap AP
    J Biol Chem; 2008 Sep; 283(39):26312-23. PubMed ID: 18667415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore.
    McStay GP; Clarke SJ; Halestrap AP
    Biochem J; 2002 Oct; 367(Pt 2):541-8. PubMed ID: 12149099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases.
    Beutner G; Rück A; Riede B; Brdiczka D
    Biochim Biophys Acta; 1998 Jan; 1368(1):7-18. PubMed ID: 9459579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase.
    Halestrap AP; Woodfield KY; Connern CP
    J Biol Chem; 1997 Feb; 272(6):3346-54. PubMed ID: 9013575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death.
    Halestrap AP; Brenner C
    Curr Med Chem; 2003 Aug; 10(16):1507-25. PubMed ID: 12871123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The permeability transition pore complex: another view.
    Halestrap AP; McStay GP; Clarke SJ
    Biochimie; 2002; 84(2-3):153-66. PubMed ID: 12022946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the mitochondrial membrane permeability transition in cell death.
    Tsujimoto Y; Shimizu S
    Apoptosis; 2007 May; 12(5):835-40. PubMed ID: 17136322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart.
    Halestrap AP; Kerr PM; Javadov S; Woodfield KY
    Biochim Biophys Acta; 1998 Aug; 1366(1-2):79-94. PubMed ID: 9714750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore.
    Leung AW; Halestrap AP
    Biochim Biophys Acta; 2008; 1777(7-8):946-52. PubMed ID: 18407825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Adenine Nucleotide Translocase in the Mitochondrial Permeability Transition.
    Brustovetsky N
    Cells; 2020 Dec; 9(12):. PubMed ID: 33333766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Not all mitochondrial carrier proteins support permeability transition pore formation: no involvement of uncoupling protein 1.
    Crichton PG; Parker N; Vidal-Puig AJ; Brand MD
    Biosci Rep; 2009 Dec; 30(3):187-92. PubMed ID: 19622065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of mitochondrial membrane bound-glutathione transferase by mitochondrial permeability transition inhibitors including cyclosporin A.
    Ulziikhishig E; Lee KK; Hossain QS; Higa Y; Imaizumi N; Aniya Y
    Life Sci; 2010 May; 86(19-20):726-32. PubMed ID: 20226794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The antiestrogen 4-hydroxytamoxifen protects against isotretinoin-induced permeability transition and bioenergetic dysfunction of liver mitochondria: comparison with tamoxifen.
    Silva FS; Ribeiro MP; Santos MS; Rocha-Pereira P; Santos-Silva A; Custódio JB
    J Bioenerg Biomembr; 2013 Aug; 45(4):383-96. PubMed ID: 23779226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipopolysaccharide administration increases the susceptibility of mitochondrial permeability transition pore opening via altering adenine nucleotide translocase conformation in the mouse liver.
    Nakajima R; Takemura A; Ikeyama Y; Ito K
    J Toxicol Sci; 2023; 48(2):65-73. PubMed ID: 36725022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absence of Ca2+-induced mitochondrial permeability transition but presence of bongkrekate-sensitive nucleotide exchange in C. crangon and P. serratus.
    Konrad C; Kiss G; Torocsik B; Adam-Vizi V; Chinopoulos C
    PLoS One; 2012; 7(6):e39839. PubMed ID: 22768139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.