BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 20614226)

  • 1. Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes.
    Feng Z; Seya D; Kitajima T; Kosawada T; Nakamura T; Umezu M
    J Artif Organs; 2010 Sep; 13(3):139-44. PubMed ID: 20614226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurements of the mechanical properties of contracted collagen gels populated with rat fibroblasts or cardiomyocytes.
    Feng Z; Matsumoto T; Nakamura T
    J Artif Organs; 2003; 6(3):192-6. PubMed ID: 14598103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation on the mechanical properties of contracted collagen gels as a scaffold for tissue engineering.
    Feng Z; Yamato M; Akutsu T; Nakamura T; Okano T; Umezu M
    Artif Organs; 2003 Jan; 27(1):84-91. PubMed ID: 12534718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constraint stress, microstructural characteristics, and enhanced mechanical properties of a special fibroblast-embedded collagen construct.
    Feng Z; Ishibashi M; Nomura Y; Kitajima T; Nakamura T
    Artif Organs; 2006 Nov; 30(11):870-7. PubMed ID: 17062110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The development of structural and mechanical anisotropy in fibroblast populated collagen gels.
    Thomopoulos S; Fomovsky GM; Holmes JW
    J Biomech Eng; 2005 Oct; 127(5):742-50. PubMed ID: 16248303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agonistic and antagonistic roles of fibroblasts and cardiomyocytes on viscoelastic stiffening of engineered human myocardium.
    Schlick SF; Spreckelsen F; Tiburcy M; Iyer LM; Meyer T; Zelarayan LC; Luther S; Parlitz U; Zimmermann WH; Rehfeldt F
    Prog Biophys Mol Biol; 2019 Jul; 144():51-60. PubMed ID: 30553553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of fibroblast-collagen gels with orientated fibrils induced by static or dynamic stress: toward the fabrication of small tendon grafts.
    Feng Z; Tateishi Y; Nomura Y; Kitajima T; Nakamura T
    J Artif Organs; 2006; 9(4):220-5. PubMed ID: 17171400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels.
    Feng Z; Ishiguro Y; Fujita K; Kosawada T; Nakamura T; Sato D; Kitajima T; Umezu M
    Biomaterials; 2015 Oct; 67():365-81. PubMed ID: 26247391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple combined floating and anchored collagen gel for enhancing mechanical strength of culture system.
    Harada I; Kim SG; Cho CS; Kurosawa H; Akaike T
    J Biomed Mater Res A; 2007 Jan; 80(1):123-30. PubMed ID: 16983652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Canine ACL fibroblast integrin expression and cell alignment in response to cyclic tensile strain in three-dimensional collagen gels.
    Henshaw DR; Attia E; Bhargava M; Hannafin JA
    J Orthop Res; 2006 Mar; 24(3):481-90. PubMed ID: 16453340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An experimental and modeling study of the viscoelastic behavior of collagen gel.
    Xu B; Li H; Zhang Y
    J Biomech Eng; 2013 May; 135(5):54501. PubMed ID: 24231962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term culture of fibroblasts in contracted collagen gels: effects on cell growth and biosynthetic activity.
    Nakagawa S; Pawelek P; Grinnell F
    J Invest Dermatol; 1989 Dec; 93(6):792-8. PubMed ID: 2584746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of intact elastin scaffolds in tissue-engineered collagen-based vascular grafts.
    Berglund JD; Nerem RM; Sambanis A
    Tissue Eng; 2004; 10(9-10):1526-35. PubMed ID: 15588412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanisms of fibroblast-mediated compaction of collagen gels and the mechanical niche around individual fibroblasts.
    Feng Z; Wagatsuma Y; Kikuchi M; Kosawada T; Nakamura T; Sato D; Shirasawa N; Kitajima T; Umezu M
    Biomaterials; 2014 Sep; 35(28):8078-91. PubMed ID: 24976242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of ligament-like structural organization and properties in cell-seeded collagen scaffolds in vitro.
    Gentleman E; Livesay GA; Dee KC; Nauman EA
    Ann Biomed Eng; 2006 May; 34(5):726-36. PubMed ID: 16463084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical and biochemical characteristics of a human fibroblast-produced and remodeled matrix.
    Ahlfors JE; Billiar KL
    Biomaterials; 2007 Apr; 28(13):2183-91. PubMed ID: 17280714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genipin-induced changes in collagen gels: correlation of mechanical properties to fluorescence.
    Sundararaghavan HG; Monteiro GA; Lapin NA; Chabal YJ; Miksan JR; Shreiber DI
    J Biomed Mater Res A; 2008 Nov; 87(2):308-20. PubMed ID: 18181104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet.
    Liao J; Yang L; Grashow J; Sacks MS
    J Biomech Eng; 2007 Feb; 129(1):78-87. PubMed ID: 17227101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscoelastic characterization of rat cerebral cortex and type I collagen scaffolds for central nervous system tissue engineering.
    Elias PZ; Spector M
    J Mech Behav Biomed Mater; 2012 Aug; 12():63-73. PubMed ID: 22659367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel fabrication method to create a thick collagen bundle composed of uniaxially aligned fibrils: an essential technology for the development of artificial tendon/ligament matrices.
    Yunoki S; Hatayama H; Ebisawa M; Kondo E; Yasuda K
    J Biomed Mater Res A; 2015 Sep; 103(9):3054-65. PubMed ID: 25727567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.