These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 20614246)

  • 1. On non-invasive measurement of gastric motility from finger photoplethysmographic signal.
    Yacin SM; Manivannan M; Chakravarthy VS
    Ann Biomed Eng; 2010 Dec; 38(12):3744-55. PubMed ID: 20614246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of gastric slow wave from finger photoplethysmographic signal using radial basis function neural network.
    Mohamed Yacin S; Srinivasa Chakravarthy V; Manivannan M
    Med Biol Eng Comput; 2011 Nov; 49(11):1241-7. PubMed ID: 21748397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined photoplethysmographic monitoring of respiration rate and pulse: a comparison between different measurement sites in spontaneously breathing subjects.
    Nilsson L; Goscinski T; Kalman S; Lindberg LG; Johansson A
    Acta Anaesthesiol Scand; 2007 Oct; 51(9):1250-7. PubMed ID: 17711563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulse rate variability and gastric electric power in fasting and postprandial conditions.
    Yacin S; Manivannan M; Chakravarthy V
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2639-42. PubMed ID: 19965230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fasting and postprandial small intestinal slow waves non-invasively measured in subjects with total gastrectomy.
    Chang FY; Lu CL; Chen CY; Luo JC; Lee SD; Wu HC; Chen JZ
    J Gastroenterol Hepatol; 2007 Feb; 22(2):247-52. PubMed ID: 17295879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using time-frequency analysis of the photoplethysmographic waveform to detect the withdrawal of 900 mL of blood.
    Scully CG; Selvaraj N; Romberg FW; Wardhan R; Ryan J; Florian JP; Silverman DG; Shelley KH; Chon KH
    Anesth Analg; 2012 Jul; 115(1):74-81. PubMed ID: 22543068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finger and forehead PPG signal comparison for respiratory rate estimation.
    Hernando A; Peláez-Coca MD; Lozano MT; Lázaro J; Gil E
    Physiol Meas; 2019 Sep; 40(9):095007. PubMed ID: 31422948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of local mild cold exposure on pulse transit time.
    Zhang XY; Zhang YT
    Physiol Meas; 2006 Jul; 27(7):649-60. PubMed ID: 16705262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal fiducial points for pulse rate variability analysis from forehead and finger photoplethysmographic signals.
    Peralta E; Lazaro J; Bailon R; Marozas V; Gil E
    Physiol Meas; 2019 Feb; 40(2):025007. PubMed ID: 30669123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of photoplethysmography and ECG recording to analyse heart rate variability in healthy subjects.
    Lu G; Yang F; Taylor JA; Stein JF
    J Med Eng Technol; 2009; 33(8):634-41. PubMed ID: 19848857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency spectrum analysis of finger photoplethysmographic waveform variability during haemodialysis.
    Javed F; Middleton PM; Malouf P; Chan GS; Savkin AV; Lovell NH; Steel E; Mackie J
    Physiol Meas; 2010 Sep; 31(9):1203-16. PubMed ID: 20664159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of respiratory-induced variations in photoplethysmographic signals.
    Li J; Jin J; Chen X; Sun W; Guo P
    Physiol Meas; 2010 Mar; 31(3):415-25. PubMed ID: 20147775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography.
    Selvaraj N; Jaryal A; Santhosh J; Deepak KK; Anand S
    J Med Eng Technol; 2008; 32(6):479-84. PubMed ID: 18663635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal quality measures for pulse oximetry through waveform morphology analysis.
    Sukor JA; Redmond SJ; Lovell NH
    Physiol Meas; 2011 Mar; 32(3):369-84. PubMed ID: 21330696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform.
    Wu HT; Lewis GF; Davila MI; Daubechies I; Porges SW
    Methods Inf Med; 2016 Oct; 55(5):463-472. PubMed ID: 27626806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Robust Motion Artifact Detection Algorithm for Accurate Detection of Heart Rates From Photoplethysmographic Signals Using Time-Frequency Spectral Features.
    Dao D; Salehizadeh SMA; Noh Y; Chong JW; Cho CH; McManus D; Darling CE; Mendelson Y; Chon KH
    IEEE J Biomed Health Inform; 2017 Sep; 21(5):1242-1253. PubMed ID: 28113791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular phone-based photoplethysmographic imaging.
    Jonathan E; Leahy MJ
    J Biophotonics; 2011 May; 4(5):293-6. PubMed ID: 20815022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the slow wave component of the electroenterogram from Laplacian abdominal surface recordings in humans.
    Prats-Boluda G; Garcia-Casado J; Martinez-de-Juan JL; Ponce JL
    Physiol Meas; 2007 Sep; 28(9):1115-33. PubMed ID: 17827658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into the dicrotic notch in photoplethysmographic pulses from the finger tip of young adults.
    Shi P; Hu S; Zhu Y; Zheng J; Qiu Y; Cheang PY
    J Med Eng Technol; 2009; 33(8):628-33. PubMed ID: 19848856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of heart rate variability signal features derived from electrocardiography and photoplethysmography in healthy individuals.
    Bolanos M; Nazeran H; Haltiwanger E
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4289-94. PubMed ID: 17946618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.