These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 20614872)
1. Wavelength-dependent differential interference contrast microscopy: multiplexing detection using nonfluorescent nanoparticles. Luo Y; Sun W; Gu Y; Wang G; Fang N Anal Chem; 2010 Aug; 82(15):6675-9. PubMed ID: 20614872 [TBL] [Abstract][Full Text] [Related]
2. Wavelength-dependent differential interference contrast microscopy: selectively imaging nanoparticle probes in live cells. Sun W; Wang G; Fang N; Yeung ES Anal Chem; 2009 Nov; 81(22):9203-8. PubMed ID: 19788254 [TBL] [Abstract][Full Text] [Related]
3. Imaging non-fluorescent nanoparticles in living cells with wavelength-dependent differential interference contrast microscopy and planar illumination microscopy. Sun W; Xiao L; Fang N Methods Mol Biol; 2013; 931():169-86. PubMed ID: 23027004 [TBL] [Abstract][Full Text] [Related]
4. Fluorescent-free detection on nanobiochips based on wavelength-dependent single plasmonic nanoparticles by differential interference contrast microscopy. Lee S; Kang SH Biosens Bioelectron; 2014 Oct; 60():45-51. PubMed ID: 24768861 [TBL] [Abstract][Full Text] [Related]
5. Quantitative enhanced Raman scattering of labeled DNA from gold and silver nanoparticles. Stokes RJ; Macaskill A; Lundahl PJ; Smith WE; Faulds K; Graham D Small; 2007 Sep; 3(9):1593-601. PubMed ID: 17647254 [TBL] [Abstract][Full Text] [Related]
6. Selective fluorescent-free detection of biomolecules on nanobiochips by wavelength dependent-enhanced dark field illumination. Lee S; Yu H; Kang SH Chem Commun (Camb); 2013 Sep; 49(75):8335-7. PubMed ID: 23925125 [TBL] [Abstract][Full Text] [Related]
7. Surface-enhanced Raman scattering detection and tracking of nanoprobes: enhanced uptake and nuclear targeting in single cells. Gregas MK; Scaffidi JP; Lauly B; Vo-Dinh T Appl Spectrosc; 2010 Aug; 64(8):858-66. PubMed ID: 20719048 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional super-localization and tracking of single gold nanoparticles in cells. Gu Y; Di X; Sun W; Wang G; Fang N Anal Chem; 2012 May; 84(9):4111-7. PubMed ID: 22458652 [TBL] [Abstract][Full Text] [Related]
10. Rapid delivery of silver nanoparticles into living cells by electroporation for surface-enhanced Raman spectroscopy. Lin J; Chen R; Feng S; Li Y; Huang Z; Xie S; Yu Y; Cheng M; Zeng H Biosens Bioelectron; 2009 Oct; 25(2):388-94. PubMed ID: 19699079 [TBL] [Abstract][Full Text] [Related]
12. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. Lee KS; El-Sayed MA J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772 [TBL] [Abstract][Full Text] [Related]
13. Hybrid surface-enhanced Raman scattering substrate from gold nanoparticle and photonic crystal: maneuverability and uniformity of Raman spectra. Wu CY; Huang CC; Jhang JS; Liu AC; Chiang CC; Hsieh ML; Huang PJ; Tuyen le D; Minh le Q; Yang TS; Chau LK; Kan HC; Hsu CC Opt Express; 2009 Nov; 17(24):21522-9. PubMed ID: 19997393 [TBL] [Abstract][Full Text] [Related]
14. Influence of gold nanorod geometry on optical response. Stender AS; Wang G; Sun W; Fang N ACS Nano; 2010 Dec; 4(12):7667-75. PubMed ID: 21090741 [TBL] [Abstract][Full Text] [Related]
19. Atomic force microscopy and surface-enhanced Raman scattering detection of DNA based on DNA-nanoparticle complexes. Sun L; Sun Y; Xu F; Zhang Y; Yang T; Guo C; Liu Z; Li Z Nanotechnology; 2009 Mar; 20(12):125502. PubMed ID: 19420468 [TBL] [Abstract][Full Text] [Related]