BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 20614877)

  • 21. Current challenges in understanding melanogenesis: bridging chemistry, biological control, morphology, and function.
    Simon JD; Peles D; Wakamatsu K; Ito S
    Pigment Cell Melanoma Res; 2009 Oct; 22(5):563-79. PubMed ID: 19627559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of ocular melanin in ophthalmic physiology and pathology.
    Hu DN; Simon JD; Sarna T
    Photochem Photobiol; 2008; 84(3):639-44. PubMed ID: 18346089
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparable photoreactivity of hair melanosomes, eu- and pheomelanins at low concentrations: low melanin a risk factor for UVA damage and melanoma?
    Haywood RM; Lee M; Andrady C
    Photochem Photobiol; 2008; 84(3):572-81. PubMed ID: 18399925
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of molar absorptivities and pigment sizes for eumelanin and pheomelanin using femtosecond transient absorption spectroscopy.
    Piletic IR; Matthews TE; Warren WS
    J Chem Phys; 2009 Nov; 131(18):181106. PubMed ID: 19916591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The surface oxidation potential of human neuromelanin reveals a spherical architecture with a pheomelanin core and a eumelanin surface.
    Bush WD; Garguilo J; Zucca FA; Albertini A; Zecca L; Edwards GS; Nemanich RJ; Simon JD
    Proc Natl Acad Sci U S A; 2006 Oct; 103(40):14785-9. PubMed ID: 17001010
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparisons of the structural and chemical properties of melanosomes isolated from retinal pigment epithelium, iris and choroid of newborn and mature bovine eyes.
    Liu Y; Hong L; Wakamatsu K; Ito S; Adhyaru BB; Cheng CY; Bowers CR; Simon JD
    Photochem Photobiol; 2005; 81(3):510-6. PubMed ID: 15701042
    [TBL] [Abstract][Full Text] [Related]  

  • 27. "Fifty Shades" of Black and Red or How Carboxyl Groups Fine Tune Eumelanin and Pheomelanin Properties.
    Micillo R; Panzella L; Koike K; Monfrecola G; Napolitano A; d'Ischia M
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27196900
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photodegradation of Eumelanin and Pheomelanin and Its Pathophysiological Implications.
    Ito S; Wakamatsu K; Sarna T
    Photochem Photobiol; 2018 May; 94(3):409-420. PubMed ID: 28873228
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative analysis of eumelanin and pheomelanin in hair and melanomas.
    Ito S; Jimbow K
    J Invest Dermatol; 1983 Apr; 80(4):268-72. PubMed ID: 6833784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physical and chemical characterization of iris and choroid melanosomes isolated from newborn and mature cows.
    Hong L; Simon JD
    Photochem Photobiol; 2005; 81(3):517-23. PubMed ID: 15790301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Establishing structure-function relationships for eumelanin.
    Nofsinger JB; Weinert EE; Simon JD
    Biopolymers; 2002; 67(4-5):302-5. PubMed ID: 12012453
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Different molecular constituents in pheomelanin are responsible for emission, transient absorption and oxygen photoconsumption.
    Ye T; Pawlak A; Sarna T; Simon JD
    Photochem Photobiol; 2008; 84(2):437-43. PubMed ID: 18248504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Imaging, chemical and spectroscopic studies of the methylation-induced decomposition of melanosomes.
    Kempf VR; Wakamatsu K; Ito S; Simon JD
    Photochem Photobiol; 2010; 86(4):765-71. PubMed ID: 20331525
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The chemical fingerprint of hair melanosomes by infrared nano-spectroscopy.
    Stanic V; Maia FCB; Freitas RO; Montoro FE; Evans-Lutterodt K
    Nanoscale; 2018 Aug; 10(29):14245-14253. PubMed ID: 30010172
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative fluorescence spectra and quantum yield map of synthetic pheomelanin.
    Nighswander-Rempel SP
    Biopolymers; 2006 Aug; 82(6):631-7. PubMed ID: 16575861
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lack of visible chromophore development in the pulse radiolysis oxidation of 5,6-dihydroxyindole-2-carboxylic acid oligomers: DFT investigation and implications for eumelanin absorption properties.
    Pezzella A; Panzella L; Crescenzi O; Napolitano A; Navaratnam S; Edge R; Land EJ; Barone V; d'Ischia M
    J Org Chem; 2009 May; 74(10):3727-34. PubMed ID: 19385623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Disentangling eumelanin "black chromophore": visible absorption changes as signatures of oxidation state- and aggregation-dependent dynamic interactions in a model water-soluble 5,6-dihydroxyindole polymer.
    Pezzella A; Iadonisi A; Valerio S; Panzella L; Napolitano A; Adinolfi M; d'Ischia M
    J Am Chem Soc; 2009 Oct; 131(42):15270-5. PubMed ID: 19919162
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Melanins and lens pigments: a comparative study.
    Cuevas AA; García-Castiñeiras S
    P R Health Sci J; 1993 Jun; 12(2):129-35. PubMed ID: 8210284
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Support and challenges to the melanosomal casing model based on nanoscale distribution of metals within iris melanosomes detected by X-ray fluorescence analysis.
    Gorniak T; Haraszti T; Suhonen H; Yang Y; Hedberg-Buenz A; Koehn D; Heine R; Grunze M; Rosenhahn A; Anderson MG
    Pigment Cell Melanoma Res; 2014 Sep; 27(5):831-4. PubMed ID: 24903463
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shedding light on melanins within in situ human eye melanocytes using 2-photon microscopy profiling techniques.
    Sitiwin E; Madigan MC; Gratton E; Cherepanoff S; Conway RM; Whan R; Macmillan A
    Sci Rep; 2019 Dec; 9(1):18585. PubMed ID: 31819095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.