These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 20614894)

  • 1. Targeting multifunctional proteins by virtual screening: structurally diverse cytohesin inhibitors with differentiated biological functions.
    Stumpfe D; Bill A; Novak N; Loch G; Blockus H; Geppert H; Becker T; Schmitz A; Hoch M; Kolanus W; Famulok M; Bajorath J
    ACS Chem Biol; 2010 Sep; 5(9):839-49. PubMed ID: 20614894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrative in silico methodology for the identification of modulators of macrophage migration inhibitory factor (MIF) tautomerase activity.
    El Turk F; Fauvet B; Ouertatani-Sakouhi H; Lugari A; Betzi S; Roche P; Morelli X; Lashuel HA
    Bioorg Med Chem; 2010 Jul; 18(14):5425-40. PubMed ID: 20639113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling small guanine-nucleotide-exchange factor function through cytoplasmic RNA intramers.
    Mayer G; Blind M; Nagel W; Böhm T; Knorr T; Jackson CL; Kolanus W; Famulok M
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4961-5. PubMed ID: 11320245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guanine nucleotide exchange factors of the cytohesin family and their roles in signal transduction.
    Kolanus W
    Immunol Rev; 2007 Aug; 218():102-13. PubMed ID: 17624947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico directed chemical probing of the adenosine receptor family.
    Areias FM; Brea J; Gregori-Puigjané E; Zaki ME; Carvalho MA; Domínguez E; Gutiérrez-de-Terán H; Proença MF; Loza MI; Mestres J
    Bioorg Med Chem; 2010 May; 18(9):3043-52. PubMed ID: 20382540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of cytohesins by SecinH3 leads to hepatic insulin resistance.
    Hafner M; Schmitz A; Grüne I; Srivatsan SG; Paul B; Kolanus W; Quast T; Kremmer E; Bauer I; Famulok M
    Nature; 2006 Dec; 444(7121):941-4. PubMed ID: 17167487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Target identification of bioactive compounds.
    Tashiro E; Imoto M
    Bioorg Med Chem; 2012 Mar; 20(6):1910-21. PubMed ID: 22104438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational chemical biology: identification of small molecular probes that discriminate between members of target protein families.
    Dimova D; Bajorath J
    Chem Biol Drug Des; 2012 Apr; 79(4):369-75. PubMed ID: 22171579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Displacement of protein-bound aptamers with small molecules screened by fluorescence polarization.
    Hafner M; Vianini E; Albertoni B; Marchetti L; Grüne I; Gloeckner C; Famulok M
    Nat Protoc; 2008; 3(4):579-87. PubMed ID: 18388939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of new inhibitors of protein kinase R guided by statistical modeling.
    Bryk R; Wu K; Raimundo BC; Boardman PE; Chao P; Conn GL; Anderson E; Cole JL; Duffy NP; Nathan C; Griffin JH
    Bioorg Med Chem Lett; 2011 Jul; 21(13):4108-14. PubMed ID: 21632247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and experimental validation of a docking strategy for the generation of kinase-targeted libraries.
    Gozalbes R; Simon L; Froloff N; Sartori E; Monteils C; Baudelle R
    J Med Chem; 2008 Jun; 51(11):3124-32. PubMed ID: 18479119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of small molecule aggregators from large compound libraries by support vector machines.
    Rao H; Li Z; Li X; Ma X; Ung C; Li H; Liu X; Chen Y
    J Comput Chem; 2010 Mar; 31(4):752-63. PubMed ID: 19569201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated one-step system to extract, analyze and annotate all relevant information from image-based cell screening of chemical libraries.
    Rabal O; Link W; Serelde BG; Bischoff JR; Oyarzabal J
    Mol Biosyst; 2010 Apr; 6(4):711-20. PubMed ID: 20237649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput virtual screening using quantum mechanical probes: discovery of selective kinase inhibitors.
    Zhou T; Caflisch A
    ChemMedChem; 2010 Jul; 5(7):1007-14. PubMed ID: 20540063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New directions in library design and analysis.
    Gillet VJ
    Curr Opin Chem Biol; 2008 Jun; 12(3):372-8. PubMed ID: 18331851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting wall techoic acid biosynthesis: an in vivo based high-throughput screen for small molecule inhibitors.
    Chen W; Woodward R; Wang PG
    ACS Chem Biol; 2009 Nov; 4(11):893-4. PubMed ID: 19888733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytohesin-1: structure, function, and ARF activation.
    Pacheco-Rodriguez G; Moss J; Vaughan M
    Methods Enzymol; 2005; 404():184-95. PubMed ID: 16413269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation.
    Tang H; Wang XS; Huang XP; Roth BL; Butler KV; Kozikowski AP; Jung M; Tropsha A
    J Chem Inf Model; 2009 Feb; 49(2):461-76. PubMed ID: 19182860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-based tailoring of compound libraries for high-throughput screening: discovery of novel EphB4 kinase inhibitors.
    Kolb P; Kipouros CB; Huang D; Caflisch A
    Proteins; 2008 Oct; 73(1):11-8. PubMed ID: 18384152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual screening of Abl inhibitors from large compound libraries by support vector machines.
    Liu XH; Ma XH; Tan CY; Jiang YY; Go ML; Low BC; Chen YZ
    J Chem Inf Model; 2009 Sep; 49(9):2101-10. PubMed ID: 19689138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.