These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 20614942)

  • 1. Natural abiotic formation of furans in soil.
    Huber SG; Wunderlich S; Schöler HF; Williams J
    Environ Sci Technol; 2010 Aug; 44(15):5799-804. PubMed ID: 20614942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of volatile iodinated alkanes in soil: results from laboratory studies.
    Keppler F; Borchers R; Elsner P; Fahimi I; Pracht J; Schöler HF
    Chemosphere; 2003 Jul; 52(2):477-83. PubMed ID: 12738273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural abiotic formation of trihalomethanes in soil: results from laboratory studies and field samples.
    Huber SG; Kotte K; Schöler HF; Williams J
    Environ Sci Technol; 2009 Jul; 43(13):4934-9. PubMed ID: 19673288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ oxidation remediation technologies: kinetic of hydrogen peroxide decomposition on soil organic matter.
    Romero A; Santos A; Vicente F; Rodriguez S; Lafuente AL
    J Hazard Mater; 2009 Oct; 170(2-3):627-32. PubMed ID: 19520509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of recalcitrant compounds by catechol-driven Fenton reaction.
    Rodriguez J; Contreras D; Oviedo C; Freer J; Baeza J
    Water Sci Technol; 2004; 49(4):81-4. PubMed ID: 15077952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural abiotic formation of oxalic acid in soils: results from aromatic model compounds and soil samples.
    Studenroth S; Huber SG; Kotte K; Schöler HF
    Environ Sci Technol; 2013 Feb; 47(3):1323-9. PubMed ID: 23311299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon suboxide, a highly reactive intermediate from the abiotic degradation of aromatic compounds in soil.
    Huber SG; Kilian G; Scholer HF
    Environ Sci Technol; 2007 Nov; 41(22):7802-6. PubMed ID: 18075091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide.
    Althoff F; Jugold A; Keppler F
    Chemosphere; 2010 Jun; 80(3):286-92. PubMed ID: 20444486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photo-assisted Fenton type processes for the degradation of phenol: a kinetic study.
    Kusić H; Koprivanac N; Bozić AL; Selanec I
    J Hazard Mater; 2006 Aug; 136(3):632-44. PubMed ID: 16466856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils.
    Hall SJ; Silver WL
    Glob Chang Biol; 2013 Sep; 19(9):2804-13. PubMed ID: 23606589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple methodology to evaluate influence of H2O2 and Fe(2+) concentrations on the mineralization and biodegradability of organic compounds in water and soil contaminated with crude petroleum.
    Mater L; Rosa EV; Berto J; Corrêa AX; Schwingel PR; Radetski CM
    J Hazard Mater; 2007 Oct; 149(2):379-86. PubMed ID: 17493749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental in situ chemical peroxidation of atrazine in contaminated soil.
    Mecozzi R; Di Palma L; Merli C
    Chemosphere; 2006 Mar; 62(9):1481-9. PubMed ID: 16083941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical oxidation of 2,4-dimethylphenol in soil by heterogeneous Fenton process.
    Romero A; Santos A; Vicente F
    J Hazard Mater; 2009 Mar; 162(2-3):785-90. PubMed ID: 18602751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Fenton oxidation on soil organic matter and its sorption and desorption of pyrene.
    Sun HW; Yan QS
    J Hazard Mater; 2007 Jun; 144(1-2):164-70. PubMed ID: 17118546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkydic resin wastewaters treatment by fenton and photo-Fenton processes.
    de Oliveira IS; Viana L; Verona C; Fallavena VL; Azevedo CM; Pires M
    J Hazard Mater; 2007 Jul; 146(3):564-8. PubMed ID: 17524557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Citric acid-modified Fenton's reaction for the oxidation of chlorinated ethylenes in soil solution systems.
    Seol Y; Javandel I
    Chemosphere; 2008 Jun; 72(4):537-42. PubMed ID: 18472129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of C2-C15 volatile organic compounds in a landfill cover soil.
    Tassi F; Montegrossi G; Vaselli O; Liccioli C; Moretti S; Nisi B
    Sci Total Environ; 2009 Jul; 407(15):4513-25. PubMed ID: 19446310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic investigations of the reaction of an iron(III) octa-anionic porphyrin complex with hydrogen peroxide and the catalyzed oxidation of diammonium-2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate).
    Brausam A; Eigler S; Jux N; van Eldik R
    Inorg Chem; 2009 Aug; 48(16):7667-78. PubMed ID: 19601585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of aliphatic sulfur pentafluorides by oxidation of SF₅-containing anisole, phenols, and anilines.
    Vida N; Pastýříková T; Klepetářová B; Beier P
    J Org Chem; 2014 Sep; 79(18):8906-11. PubMed ID: 25137015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decontamination of soil containing POPs by the combined action of solid Fenton-like reagents and microwaves.
    Cravotto G; Di Carlo S; Ondruschka B; Tumiatti V; Roggero CM
    Chemosphere; 2007 Oct; 69(8):1326-9. PubMed ID: 17619050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.