BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20614992)

  • 1. Fibrin phantom for use in optical coherence tomography.
    Kennedy BF; Loitsch S; McLaughlin RA; Scolaro L; Rigby P; Sampson DD
    J Biomed Opt; 2010; 15(3):030507. PubMed ID: 20614992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structured three-dimensional optical phantom for optical coherence tomography.
    Curatolo A; Kennedy BF; Sampson DD
    Opt Express; 2011 Sep; 19(20):19480-5. PubMed ID: 21996888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the magneto-optical effect in biological tissue models using optical coherence tomography.
    Pereda-Cubián D; Todorović M; Arce-Diego JL; Wang LV
    J Biomed Opt; 2007; 12(6):060502. PubMed ID: 18163797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fat emulsions as diffusive reference standards for tissue simulating phantoms?
    Di Ninni P; Bérubé-Lauzière Y; Mercatelli L; Sani E; Martelli F
    Appl Opt; 2012 Oct; 51(30):7176-82. PubMed ID: 23089769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printing-assisted fabrication of double-layered optical tissue phantoms for laser tattoo treatments.
    Kim H; Hau NT; Chae YG; Lee BI; Kang HW
    Lasers Surg Med; 2016 Apr; 48(4):392-9. PubMed ID: 26749358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Birefringent tissue-mimicking phantom for polarization-sensitive optical coherence tomography imaging.
    Chang S; Handwerker J; Giannico GA; Chang SS; Bowden AK
    J Biomed Opt; 2022 Jan; 27(7):. PubMed ID: 35064658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2010 Apr; 37(4):1440-8. PubMed ID: 20443465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of optical scattering from Intralipid in gelatin-gel based tissue-mimicking phantoms on mixing temperature and time.
    Lai P; Xu X; Wang LV
    J Biomed Opt; 2014 Mar; 19(3):35002. PubMed ID: 24604534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the scattering anisotropy with optical coherence tomography.
    Kodach VM; Faber DJ; van Marle J; van Leeuwen TG; Kalkman J
    Opt Express; 2011 Mar; 19(7):6131-40. PubMed ID: 21451637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy.
    Wagnières G; Cheng S; Zellweger M; Utke N; Braichotte D; Ballini JP; van den Bergh H
    Phys Med Biol; 1997 Jul; 42(7):1415-26. PubMed ID: 9253049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of dye diffusion in scattering tissue phantoms using dual-wavelength low-coherence interferometry.
    Storen T; Royset A; Svaasand LO; Lindmo T
    J Biomed Opt; 2006; 11(1):014017. PubMed ID: 16526894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical properties of Intralipid: a phantom medium for light propagation studies.
    Flock ST; Jacques SL; Wilson BC; Star WM; van Gemert MJ
    Lasers Surg Med; 1992; 12(5):510-9. PubMed ID: 1406004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multilayered tissue structures.
    Thrane L; Frosz MH; Jørgensen TM; Tycho A; Yura HT; Andersen PE
    Opt Lett; 2004 Jul; 29(14):1641-3. PubMed ID: 15309845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional imaging of dye concentration in tissue phantoms by spectroscopic optical coherence tomography.
    Støren T; Røyset A; Svaasand LO; Lindmo T
    J Biomed Opt; 2005; 10(2):024037. PubMed ID: 15910110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurements of fundamental properties of homogeneous tissue phantoms.
    Wróbel MS; Popov AP; Bykov AV; Kinnunen M; Jędrzejewska-Szczerska M; Tuchin VV
    J Biomed Opt; 2015 Apr; 20(4):045004. PubMed ID: 25891198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical phantom materials for near infrared laser photocoagulation studies.
    Iizuka MN; Sherar MD; Vitkin IA
    Lasers Surg Med; 1999; 25(2):159-69. PubMed ID: 10455223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micron resolution, high-fidelity three-dimensional vascular optical imaging phantoms.
    Little CD; Poduval RK; Caulfield R; Noimark S; Colchester RJ; Loder CD; Tiwari MK; Rakhit RD; Papakonstantinou I; Desjardins AE
    J Biomed Opt; 2019 Feb; 24(2):1-4. PubMed ID: 30770678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue perfusion modelling in optical coherence tomography.
    Stohanzlova P; Kolar R
    Biomed Eng Online; 2017 Feb; 16(1):27. PubMed ID: 28178998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical phantoms of varying geometry based on thin building blocks with controlled optical properties.
    de Bruin DM; Bremmer RH; Kodach VM; de Kinkelder R; van Marle J; van Leeuwen TG; Faber DJ
    J Biomed Opt; 2010; 15(2):025001. PubMed ID: 20459242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime.
    Almasian M; Bosschaart N; van Leeuwen TG; Faber DJ
    J Biomed Opt; 2015; 20(12):121314. PubMed ID: 26720868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.