BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 20614994)

  • 21. Simple and robust calibration procedure for k-linearization and dispersion compensation in optical coherence tomography.
    Attendu X; Ruis RM; Boudoux C; van Leeuwen TG; Faber DJ
    J Biomed Opt; 2019 May; 24(5):1-11. PubMed ID: 31087833
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography.
    Vergnole S; Lévesque D; Lamouche G
    Opt Express; 2010 May; 18(10):10446-61. PubMed ID: 20588899
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence and compensation of autocorrelation terms in depth-resolved spectroscopic Fourier-domain optical coherence tomography.
    Steiner P; Meier C; Koch VM
    Appl Opt; 2010 Dec; 49(36):6917-23. PubMed ID: 21173826
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units.
    Sylwestrzak M; Szlag D; Szkulmowski M; Gorczynska I; Bukowska D; Wojtkowski M; Targowski P
    J Biomed Opt; 2012 Oct; 17(10):100502. PubMed ID: 23042477
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering.
    Jian Y; Wong K; Sarunic MV
    J Biomed Opt; 2013 Feb; 18(2):26002. PubMed ID: 23377003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography.
    Schaefer AW; Reynolds JJ; Marks DL; Boppart SA
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):186-90. PubMed ID: 14723509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-level optical coherence tomography scheme for suppressing spectral saturation artifacts.
    Wu CT; Tsai MT; Lee CK
    Sensors (Basel); 2014 Jul; 14(8):13548-55. PubMed ID: 25068864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Full-range k-domain linearization in spectral-domain optical coherence tomography.
    Jeon M; Kim J; Jung U; Lee C; Jung W; Boppart SA
    Appl Opt; 2011 Mar; 50(8):1158-63. PubMed ID: 21394187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography.
    Yasuno Y; Makita S; Endo T; Aoki G; Itoh M; Yatagai T
    Appl Opt; 2006 Mar; 45(8):1861-5. PubMed ID: 16572705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quasi-single shot axial-lateral parallel time domain optical coherence tomography with Hilbert transformation.
    Watanabe Y; Sato M
    Opt Express; 2008 Jan; 16(2):524-34. PubMed ID: 18542127
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Signal-to-noise ratio study of full-field fourier-domain optical coherence tomography.
    Blazkiewicz P; Gourlay M; Tucker JR; Rakic AD; Zvyagin AV
    Appl Opt; 2005 Dec; 44(36):7722-9. PubMed ID: 16381518
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectral phase-based automatic calibration scheme for swept source-based optical coherence tomography systems.
    Ratheesh KM; Seah LK; Murukeshan VM
    Phys Med Biol; 2016 Nov; 61(21):7652-7663. PubMed ID: 27740940
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Doppler calibration method for Spectral Domain OCT spectrometers.
    Faber DJ; van Leeuwen TG
    J Biophotonics; 2009 Jul; 2(6-7):407-15. PubMed ID: 19533622
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Real-time and high-performance calibration method for high-speed swept-source optical coherence tomography.
    Azimi E; Liu B; Brezinski ME
    J Biomed Opt; 2010; 15(1):016005. PubMed ID: 20210451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single camera spectral domain polarization-sensitive optical coherence tomography using offset B-scan modulation.
    Fan C; Yao G
    Opt Express; 2010 Mar; 18(7):7281-7. PubMed ID: 20389749
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parallelized multi-graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy.
    Tankam P; Santhanam AP; Lee KS; Won J; Canavesi C; Rolland JP
    J Biomed Opt; 2014 Jul; 19(7):71410. PubMed ID: 24695868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kalman-Based Real-Time Functional Decomposition for the Spectral Calibration in Swept Source Optical Coherence Tomography.
    Zavareh AT; Hoyos S
    IEEE Trans Biomed Circuits Syst; 2020 Apr; 14(2):257-273. PubMed ID: 31751249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT.
    Hillmann D; Bonin T; Lührs C; Franke G; Hagen-Eggert M; Koch P; Hüttmann G
    Opt Express; 2012 Mar; 20(6):6761-76. PubMed ID: 22418560
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exact and efficient signal reconstruction in frequency-domain optical-coherence tomography.
    Seelamantula CS; Villiger ML; Leitgeb RA; Unser M
    J Opt Soc Am A Opt Image Sci Vis; 2008 Jul; 25(7):1762-71. PubMed ID: 18594634
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-step method for fiber-optic probe-based full-range spectral domain optical coherence tomography.
    Min EJ; Shin JG; Lee JH; Yasuno Y; Lee BH
    Appl Opt; 2013 Jul; 52(21):5143-51. PubMed ID: 23872759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.