These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 206150)
41. Interleukin-2 increases activity of sarcoplasmic reticulum Ca2+-ATPase, but decreases its sensitivity to calcium in rat cardiomyocytes. Cao CM; Xia Q; Bruce IC; Zhang X; Fu C; Chen JZ J Pharmacol Exp Ther; 2003 Aug; 306(2):572-80. PubMed ID: 12730349 [TBL] [Abstract][Full Text] [Related]
42. Adenosine 3',5'-monophosphate, the myocardial cell membrane, and calcium. Wollenberger A; Will H; Krause EG; Wollenberger A; Will H; Krause EG Recent Adv Stud Cardiac Struct Metab; 1975; 5():81-93. PubMed ID: 171710 [TBL] [Abstract][Full Text] [Related]
43. Comparison of cyclic AMP-dependent phosphorylation of sarcolemma and sarcoplasmic reticulum from rat cardiac ventricle muscle. Velema J; Noordam PC; Zaagsma J Int J Biochem; 1983; 15(5):675-84. PubMed ID: 6305738 [TBL] [Abstract][Full Text] [Related]
44. Phosphorylation of low molecular weight proteins in purified preparations of rat heart sarcolemma and sarcoplasmic reticulum. Lamers JM; Stinis JT Biochim Biophys Acta; 1980 Aug; 624(2):443-59. PubMed ID: 6251900 [TBL] [Abstract][Full Text] [Related]
45. The cardiac sarcoplasmic reticulum-glycogenolytic complex. A possible effector site for cyclic AMP. Entman ML; Bornet EP; Barber AJ; Schwartz A; Levey GS; Lehotay DC; Bricker LA Biochim Biophys Acta; 1977 Sep; 499(2):228-37. PubMed ID: 198010 [TBL] [Abstract][Full Text] [Related]
46. Regulation of calcium transport by the ATPase-phospholamban system. Tada M; Inui M J Mol Cell Cardiol; 1983 Sep; 15(9):565-75. PubMed ID: 6313949 [No Abstract] [Full Text] [Related]
47. Phosphorylation of the 100 000 Mr Ca2+-transport ATPase by Ca2+ or cyclic AMP-dependent and -independent protein kinases. Varsanyi M; Heilmeyer LM FEBS Lett; 1981 Aug; 131(2):223-8. PubMed ID: 6271572 [No Abstract] [Full Text] [Related]
48. Relationship between cyclic AMP-dependent protein kinase activation and Ca uptake increase of sarcoplasmic reticulum fraction of hog biliary muscles relaxed by cholecystokinin-C-terminal peptides. Kimura M; Kimura I; Kobayashi S Biochem Pharmacol; 1982 Oct; 31(19):3077-83. PubMed ID: 6293507 [TBL] [Abstract][Full Text] [Related]
49. Alterations of Ca 2 uptake and Ca 2+ activated ATPase of cardiac sarcoplasmic reticulum in hyper- and hypothyroidism. Suko J Biochim Biophys Acta; 1971 Nov; 252(2):324-7. PubMed ID: 4257281 [No Abstract] [Full Text] [Related]
50. Partial characterization of protein kinase-catalyzed phosphorylation of low molecular weight proteins in purified preparations of pigeon heart sarcolemma and sarcoplasmic reticulum. Will H; Levchenko TS; Levitsky DO; Smirnov VN; Wollenberger A Biochim Biophys Acta; 1978 Oct; 543(2):175-93. PubMed ID: 365242 [TBL] [Abstract][Full Text] [Related]
51. Adenosine 3':5'-monophosphate-dependent protein kinase-catalyzed phosphorylation reaction and its relationship to calcium transport in cardiac sarcoplasmic reticulum. Kirchberger MA; Tada M; Katz AM J Biol Chem; 1974 Oct; 249(19):6166-73. PubMed ID: 4371435 [No Abstract] [Full Text] [Related]
52. Effect of antihypertensive therapy on calcium transport by cardiac sarcoplasmic reticulum of SHRs. Limas CJ; Spier SS Cardiovasc Res; 1980 Dec; 14(12):692-9. PubMed ID: 6455196 [TBL] [Abstract][Full Text] [Related]
53. Effect of myocardial protein kinase modulator on adenosine 3' : 5'-monophosphate-dependent protein kinase-induced stimulation of calcium transport by cardiac sarcoplasmic reticulum. Tada M; Ohmori F; Nimura Y; Abe H J Biochem; 1977 Sep; 82(3):885-92. PubMed ID: 199585 [No Abstract] [Full Text] [Related]
54. Synthesis, transfer, and phosphorylation of phosphoinositides in cardiac membranes. Wolf RA Am J Physiol; 1990 Dec; 259(6 Pt 1):C987-94. PubMed ID: 2175550 [TBL] [Abstract][Full Text] [Related]
55. Effects of the thyroid status on the sarcoplasmic reticulum in slow skeletal muscle of the rat. Simonides WS; van Hardeveld C Cell Calcium; 1986 Jun; 7(3):147-60. PubMed ID: 3719680 [TBL] [Abstract][Full Text] [Related]
56. Reconstitution of heavy chain and light chain 1 in cardiac subfragment-1 from hyperthyroid and euthyroid rabbit hearts. Ueda S; Yamaoki K; Nagai R; Yazaki Y Adv Myocardiol; 1983; 4():189-93. PubMed ID: 6304826 [TBL] [Abstract][Full Text] [Related]
57. Cyclic AMP modulation of calcium accumulation by sarcoplasmic reticulum from fast skeletal muscle. Bornet EP; Entman ML; Van Winkle WB; Schwartz A; Lehotay DC; Levey GS Biochim Biophys Acta; 1977 Jul; 468(2):188-93. PubMed ID: 195607 [TBL] [Abstract][Full Text] [Related]
58. Effect of drugs on the cyclic adenosine 3' 5' monophosphate-dependent protein kinase-induced stimulation of calcium uptake by cardiac microsomal fractions. Nayler WG; Berry D J Mol Cell Cardiol; 1975 Jun; 7(6):387-95. PubMed ID: 169356 [No Abstract] [Full Text] [Related]
59. The role of calcium in the enhanced myocardial contractility of the hyperthyroid rat heart. Butkow N; Wheatley AM; Lippe IT; Marcus RH; Rosendorff C Basic Res Cardiol; 1990; 85(3):297-306. PubMed ID: 2383223 [TBL] [Abstract][Full Text] [Related]
60. Hyperthyroidism increases adenosine transport and metabolism in the rat heart. Smolenski RT; Yacoub MH; Seymour AM Mol Cell Biochem; 1995 Feb; 143(2):143-9. PubMed ID: 7596349 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]