BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 20615031)

  • 1. Precision of coherence analysis to detect cerebral autoregulation by near-infrared spectroscopy in preterm infants.
    Hahn GH; Christensen KB; Leung TS; Greisen G
    J Biomed Opt; 2010; 15(3):037002. PubMed ID: 20615031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing impact of perinatal inflammation on cerebral autoregulation in preterm neonates: evaluation of a noninvasive method.
    Hahn GH
    Dan Med J; 2013 Apr; 60(4):B4628. PubMed ID: 23651728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring cerebrovascular autoregulation in preterm infants using near-infrared spectroscopy: an overview of the literature.
    Kooi EMW; Verhagen EA; Elting JWJ; Czosnyka M; Austin T; Wong FY; Aries MJH
    Expert Rev Neurother; 2017 Aug; 17(8):801-818. PubMed ID: 28639837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional connectivity of the cortex of term and preterm infants and infants with Down's syndrome.
    Imai M; Watanabe H; Yasui K; Kimura Y; Shitara Y; Tsuchida S; Takahashi N; Taga G
    Neuroimage; 2014 Jan; 85 Pt 1():272-8. PubMed ID: 23631984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy.
    Arri SJ; Muehlemann T; Biallas M; Bucher HU; Wolf M
    J Biomed Opt; 2011 Apr; 16(4):047005. PubMed ID: 21529095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of cerebral autoregulation by near-infrared spectroscopy in neonates: performance analysis of measurement methods.
    Caicedo A; Naulaers G; Lemmers P; van Bel F; Wolf M; Van Huffel S
    J Biomed Opt; 2012 Nov; 17(11):117003. PubMed ID: 23117814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral analysis of systemic and cerebral cardiovascular variabilities in preterm infants: relationship with clinical risk index for babies (CRIB).
    Zhang Y; Chan GS; Tracy MB; Lee QY; Hinder M; Savkin AV; Lovell NH
    Physiol Meas; 2011 Dec; 32(12):1913-28. PubMed ID: 22048689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy.
    Wong FY; Leung TS; Austin T; Wilkinson M; Meek JH; Wyatt JS; Walker AM
    Pediatrics; 2008 Mar; 121(3):e604-11. PubMed ID: 18250118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants.
    Tsuji M; Saul JP; du Plessis A; Eichenwald E; Sobh J; Crocker R; Volpe JJ
    Pediatrics; 2000 Oct; 106(4):625-32. PubMed ID: 11015501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can the Assessment of Spontaneous Oscillations by Near Infrared Spectrophotometry Predict Neurological Outcome of Preterm Infants?
    Stammwitz A; von Siebenthal K; Bucher HU; Wolf M
    Adv Exp Med Biol; 2016; 876():521-531. PubMed ID: 26782253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wavelet coherence analysis of spontaneous oscillations in cerebral tissue oxyhemoglobin concentrations and arterial blood pressure in elderly subjects.
    Cui R; Zhang M; Li Z; Xin Q; Lu L; Zhou W; Han Q; Gao Y
    Microvasc Res; 2014 May; 93():14-20. PubMed ID: 24594440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applicability of near-infrared spectroscopy to measure cerebral autoregulation noninvasively in neonates: a validation study in piglets.
    Hahn GH; Heiring C; Pryds O; Greisen G
    Pediatr Res; 2011 Aug; 70(2):166-70. PubMed ID: 21566541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebral autoregulation in response to posture change in elderly subjects-assessment by wavelet phase coherence analysis of cerebral tissue oxyhemoglobin concentrations and arterial blood pressure signals.
    Gao Y; Zhang M; Han Q; Li W; Xin Q; Wang Y; Li Z
    Behav Brain Res; 2015 Feb; 278():330-6. PubMed ID: 25453742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between cerebrovascular dysautoregulation and arterial blood pressure in the premature infant.
    Gilmore MM; Stone BS; Shepard JA; Czosnyka M; Easley RB; Brady KM
    J Perinatol; 2011 Nov; 31(11):722-9. PubMed ID: 21372795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-infrared spectroscopy to detect absence of cerebrovascular autoregulation in preterm infants.
    Verhagen EA; Hummel LA; Bos AF; Kooi EM
    Clin Neurophysiol; 2014 Jan; 125(1):47-52. PubMed ID: 23973384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tocolytic indomethacin: effects on neonatal haemodynamics and cerebral autoregulation in the preterm newborn.
    Baerts W; van Bel F; Thewissen L; Derks JB; Lemmers PM
    Arch Dis Child Fetal Neonatal Ed; 2013 Sep; 98(5):F419-23. PubMed ID: 23482639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral oxygenation and cerebral oxygen extraction in the preterm infant: the impact of respiratory distress syndrome.
    Lemmers PM; Toet M; van Schelven LJ; van Bel F
    Exp Brain Res; 2006 Aug; 173(3):458-67. PubMed ID: 16506004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired cerebral autoregulation using near-infrared spectroscopy and its relation to clinical outcomes in premature infants.
    Caicedo A; De Smet D; Vanderhaegen J; Naulaers G; Wolf M; Lemmers P; Van Bel F; Ameye L; Van Huffel S
    Adv Exp Med Biol; 2011; 701():233-9. PubMed ID: 21445792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-evolving coupling functions for evaluating the interaction between cerebral oxyhemoglobin and arterial blood pressure with hypertension.
    Li W; Zhang M; Huo C; Xu G; Chen W; Wang D; Li Z
    Med Phys; 2021 Apr; 48(4):2027-2037. PubMed ID: 33253413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive Optical Measurements of Dynamic Cerebral Autoregulation by Inducing Oscillatory Cerebral Hemodynamics.
    Pham T; Fernandez C; Blaney G; Tgavalekos K; Sassaroli A; Cai X; Bibu S; Kornbluth J; Fantini S
    Front Neurol; 2021; 12():745987. PubMed ID: 34867729
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.