These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 20615041)
1. Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor. Malik BH; Coté GL J Biomed Opt; 2010; 15(3):037012. PubMed ID: 20615041 [TBL] [Abstract][Full Text] [Related]
2. Dual-wavelength polarimetric glucose sensing in the presence of birefringence and motion artifact using anterior chamber of the eye phantoms. Malik BH; Pirnstill CW; Coté GL J Biomed Opt; 2013 Jan; 18(1):17007. PubMed ID: 23299516 [TBL] [Abstract][Full Text] [Related]
3. Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the eye. Baba JS; Cameron BD; Theru S; Coté GL J Biomed Opt; 2002 Jul; 7(3):321-8. PubMed ID: 12175281 [TBL] [Abstract][Full Text] [Related]
4. In vivo glucose monitoring using dual-wavelength polarimetry to overcome corneal birefringence in the presence of motion. Pirnstill CW; Malik BH; Gresham VC; Coté GL Diabetes Technol Ther; 2012 Sep; 14(9):819-27. PubMed ID: 22691020 [TBL] [Abstract][Full Text] [Related]
5. Development of a real-time corneal birefringence compensated glucose sensing polarimeter. Cameron BD; Anumula H Diabetes Technol Ther; 2006 Apr; 8(2):156-64. PubMed ID: 16734546 [TBL] [Abstract][Full Text] [Related]
12. Polarimetric analysis of the human cornea measured by polarization-sensitive optical coherence tomography. Fanjul-Vélez F; Pircher M; Baumann B; Götzinger E; Hitzenberger CK; Arce-Diego JL J Biomed Opt; 2010; 15(5):056004. PubMed ID: 21054098 [TBL] [Abstract][Full Text] [Related]
13. Corneal birefringence measured by spectrally resolved Mueller matrix ellipsometry and implications for non-invasive glucose monitoring. Westphal P; Kaltenbach JM; Wicker K Biomed Opt Express; 2016 Apr; 7(4):1160-74. PubMed ID: 27446644 [TBL] [Abstract][Full Text] [Related]
14. New optical scheme for a polarimetric-based glucose sensor. Ansari RR; Böckle S; Rovati L J Biomed Opt; 2004; 9(1):103-15. PubMed ID: 14715061 [TBL] [Abstract][Full Text] [Related]
15. Non-invasive polarimetric measurement of glucose concentration in the anterior chamber of the eye. Rawer R; Stork W; Kreiner CF Graefes Arch Clin Exp Ophthalmol; 2004 Dec; 242(12):1017-23. PubMed ID: 15592870 [TBL] [Abstract][Full Text] [Related]
16. Corneal polarization in the living human eye explained with a biaxial model. Van Blokland GJ; Verhelst SC J Opt Soc Am A; 1987 Jan; 4(1):82-90. PubMed ID: 3559783 [TBL] [Abstract][Full Text] [Related]
17. Effect of uncompensated corneal polarization on the detection of localized retinal nerve fiber layer defects. Kogure S; Kohwa H; Tsukahara S Ophthalmic Res; 2008; 40(2):61-8. PubMed ID: 18230917 [TBL] [Abstract][Full Text] [Related]
18. Corneal birefringence changes after laser assisted in situ keratomileusis and their influence on retinal nerve fibre layer thickness measurement by means of scanning laser polarimetry. Centofanti M; Oddone F; Parravano M; Gualdi L; Bucci MG; Manni G Br J Ophthalmol; 2005 Jun; 89(6):689-93. PubMed ID: 15923503 [TBL] [Abstract][Full Text] [Related]
19. Linear birefringence measurements of the in vitro human cornea. Jaronski JW; Kasprzak HT Ophthalmic Physiol Opt; 2003 Jul; 23(4):361-9. PubMed ID: 12828626 [TBL] [Abstract][Full Text] [Related]
20. Laser-based measurement of glucose in the ocular aqueous humor: an efficacious portal for determination of serum glucose levels. Steffes PG Diabetes Technol Ther; 1999; 1(2):129-33. PubMed ID: 11475284 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]